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Preface

It is a well-known fact that iterative methods have been studied since problems where we

cannot find a solution in a closed form. There exist methods with different behaviors when

they are applied to different functions, methods with higher order of convergence, meth-

ods with great zones of convergence, methods which do not require the evaluation of any

derivative, etc. and researchers are developing new iterative methods frequently.

Once these iterative methods appeared, several researchers have studied them in dif-

ferent terms: convergence conditions, real dynamics, complex dynamics, optimal order

of convergence, etc. This phenomena motivated the authors to study the most used and

classical ones as for example Newton’s method or its derivative-free alternative the Secant

method.

Related to the convergence of iterative methods, the most well known conditions are the

Kantorovich ones, who developed a theory which has allow many researchers to continue

and experiment with these conditions. Many authors in the recent years have studied mod-

ifications of theses conditions related, for example, to centered conditions, ω-conditions or

even convergence in Hilbert spaces.

In this monograph, we present the complete recent work of the past decade of the au-

thors on Convergence and Dynamics of iterative methods. It is the natural outgrowth of

their related publications in these areas. Chapters are self-contained and can be read inde-

pendently. Moreover, an extensive list of references is given in each chapter, in order to

allow reader to use the previous ideas. For these reasons, we think that several advanced

courses can be taught using this book.

The list of presented topic of our related studies follows.

Secant-type methods;

Efficient Steffensen-type algorithms for solving nonlinear equations;

On the semilocal convergence of Halley’s method under a center-Lipschitz condition on

the second Fréchet derivative;

An improved convergence analysis of Newton’s method for twice Fréchet differentiable

operators;

Expanding the applicability of Newton’s method using Smale’s α-theory;

Newton-type methods on Riemannian Manifolds under Kantorovich-type conditions;

Improved local convergence analysis of inexact Gauss-Newton like methods;

Expanding the Applicability of Lavrentiev Regularization Methods for Ill-posed Problems;

A semilocal convergence for a uniparametric family of efficient secant-like methods;

On the semilocal convergence of a two-step Newton-like projection method for ill-posed



xiv Ioannis K. Argyros and Á. Alberto Magreñán

equations;

New Approach to Relaxed Proximal Point Algorithms Based on A−maximal;

Newton-type Iterative Methods for Nonlinear Ill-posed Hammerstein-type Equations;

Enlarging the convergence domain of secant-like methods for equations;

Solving nonlinear equations system via an efficient genetic algorithm with symmetric and

harmonious individuals;

On the Semilocal Convergence of Modified Newton-Tikhonov Regularization Method for

Nonlinear Ill-posed Problems;

Local convergence analysis of proximal Gauss-Newton method for penalized nonlinear

least squares problems;

On the convergence of a Damped Newton method with modified right-hand side vector;

Local convergence of inexact Newton-like method Under weak Lipschitz conditions;

Expanding the applicability of Secant method with applications;

Expanding the convergence domain for Chun-Stanica-Neta family of third order methods

in Banach spaces;

Local convergence of modified Halley-like methods with less computation of inversion;

Local convergence for an improved Jarratt-type method in Banach space;

Enlarging the convergence domain of secant-like methods for equations.

The book’s results are expected to find applications in many areas of applied mathemat-

ics, engineering, computer science and real problems. As such this monograph is suitable

to researchers, graduate students and seminars in the above subjets, also to be in all science

and engineering libraries.

The preparation of this book took place during 2015-2016 in Lawton, Oklahoma, USA

and Logroño, La Rioja, Spain.

April 2016

Ioannis K. Argyros

Á. Alberto Magreñán



Chapter 1

Secant-Type Methods

1.1. Introduction

In this chapter we are concerned with the problem of approximating a locally unique solu-

tion x? of the nonlinear equation

F(x) = 0, (1.1.1)

where, F is a Fréchet-differentiable operator defined on a nonempty subset D of a Banach

space X with values in a Banach space Y . A lot of problems from Applied Sciences can

be expressed in a form like (1.1.1) using mathematical modelling [3]. The solutions of

these equations can be found in closed form only in special cases. That is why the most

solution methods for these equations are iterative. The convergence analysis of iterative

methods is usually divided into two categories: semilocal and local convergence analysis.

In the semilocal convergence analysis one derives convergence criteria from the information

around an initial point whereas in the local analysis one finds estimates of the radii of

convergence balls from the information around a solution. If X = Y and Q(x) = F(x)+ x,

then the solution x∗ of equation (1.1.1) is very important in fixed point theory.

We study the convergence of the secant-type method

xn+1 = xn −A−1
n F(xn), An = δF(xn,yn) for each n = 1,2, · · · , (1.1.2)

where x−1,x0 are initial points, yn = θnxn + (1− θn)xn−1, θn ∈ R. Here An ∈ L(X ,Y ),

x,y ∈ D is a consistent approximation of the Fréchet-derivative of F (see page 182 of [15]

or the second estimate in condition (D4) of Definition 3.1). L(X ,Y ) stands for the space of

bounded linear operators from X to Y . Many iterative methods are special cases of (1.1.2).

Indeed, if θn = 1, then we obtain Newton’s method

xn+1 = xn −F ′(xn)
−1F(xn) for each n = 0,1,2 . . .; (1.1.3)

if θn = 0, we obtain the secant method

xn+1 = xn −δF(xn,xn−1)
−1F(xn) for each n = 0,1,2 . . .; (1.1.4)

if θn = 2, we obtain the Kurchatov method

xn+1 = xn −δF(xn,2xn−xn−1)
−1F(xn) for each n = 0,1,2 . . .. (1.1.5)
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Other choices of θn are also possible [1, 2, 6, 8, 9, 12, 14, 15, 21, 22]. There is a plethora

of sufficient convergence criteria for special cases of secant-type methods (1.1.3)-(1.1.5)

under Lipschitz-type conditions (1.1.2) (see [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16,

17, 18, 19, 20, 21, 22] and the references there in) or even graphical tools to study them [13].

Therefore, it is important to study the convergence of the secant-type method in a unified

way. It is interesting to notice that although we use very general majorizing sequences for

{xn} our technique leads in the semilocal case to: weaker sufficient convergence criteria;

more precise estimates on the distances ‖xn − xn−1‖, ‖xn − x∗‖ and an at least as precise

information on the location of the solution x∗ in many interesting special cases such as

Newton’s method or the secant method (see Remark 3.3 and the Examples). Moreover,

in the local case: a larger radius of convergence and more precise error estimates than in

earlier studies such as [8, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 21, 22] are obtained in this

chapter (see Remark 4.2 and the Examples).

The chapter is organized as follows. In Section 1.2 we study the convergence of the

majorizing sequences for {xn}. Section 1.3 contains the semilocal and Section 1.4 the

local convergence analysis for {xn}. The numerical examples are given in the concluding

Section 1.5. In particular, in the local case we present an example where the radius of

convergence is larger than the one given by Rheinboldt [18] and Traub [19] for Newton’s

method. Moreover, in the semilocal case we provide an example involving a nonlinear

integral equation of Chandrasekhar type [7] appearing in radiative transfer as well as an

example involving a two point boundary value problem.

1.2. Majorizing Sequences for the Secant-Type Method

In this Section, we shall first study some scalar sequences which are related to the secant-

type method.

Let there be parameters c ≥ 0, ν ≥ 0, λ ≥ 0, µ ≥ 1, l0 > 0 and l > 0 with l0 ≤ l. Define

the scalar sequence {αn} by





α−1 = 0, α0 = c,α1 = c+ν

αn+2 = αn+1 +
l (αn+1−αn +λ(αn −αn−1))(αn+1 −αn)

1− l0 [µ(αn+1 −c)+λ(αn−c)+c]
for each n = 0,1,2, · · ·

(1.2.1)

Special cases of the sequence {αn} have been used as majorizing sequences for secant-type

method by several authors. For example: Case 1 (secant method) l0 = l, λ = 1 and µ = 1 has

been studied in [6, 8, 9, 12, 14, 15, 20, 21] and for l0 ≤ l in [2, 4]. Case 2 (Newton’s method)

l0 = l, λ = 0, c = 0 and µ = 2 has been studied in [1, 8, 10, 11, 12, 14, 15, 17, 18, 19, 21, 22]

and for l0 ≤ l in [2, 3, 4]. In the present chapter we shall study the convergence of sequence

{αn} by first simplifying it. Indeed, the purpose of the following transformations is to

study the sequence (1.2.1) after using easier to study sequences defined by (1.2.3), (1.2.6)

and (1.2.8). Let

L0 =
l0

1+(µ+λ−1)l0c
and L =

l

1+(µ+λ−1)l0c
. (1.2.2)
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Using (1.2.1) and (1.2.2), sequence {αn} can be written as





α−1 = 0, α0 = c,α1 = c+ν

αn+2 = αn+1 +
L(αn+1−αn +λ(αn −αn−1))(αn+1 −αn)

1−L0(µαn+1 +λαn)
for each n = 0,1,2, · · ·

(1.2.3)

Moreover, let

L = bL0 for some b ≥ 1 (1.2.4)

and

βn = L0αn. (1.2.5)

Then, we can define sequence {βn} by





β−1 = 0, β0 = L0c, β1 = L0(c+ν)

βn+2 = βn+1 +
b
(
βn+1 −βn +λ(βn −βn−1)

)
(βn+1−βn)

1− (µβn+1 +λβn)
for each n = 0,1,2, · · ·

(1.2.6)

Furthermore, let

γn =
1

µ+λ
−βn for each n = 0,1,2, · · · . (1.2.7)

Then, sequence {γn} is defined by





γ−1 = 1
µ+λ ,γ0 = 1

µ+λ −L0c, γ1 = 1
µ+λ −L0(c+ν)

γn+2 = γn+1 −
b
(
γn+1 − γn +λ(γn − γn−1)

)
(γn+1 − γn)

µγn+1 +λγn

for each n = 0,1,2, · · ·

(1.2.8)

Finally, let

δn = 1− γn

γn−1

for each n = 0,1,2, · · · (1.2.9)

Then, we define the sequence {δn} by





δ0 = 1− γ0

γ−1
,δ1 = 1− γ1

γ0

δn+2 =
bδn+1 (λδn +(1−δn)δn+1)

(1−δn)(1−δn+1) (µ(1−δn+1)+λ)
for each n = 0,1,2, · · ·

(1.2.10)

It is convenient for the study of the convergence of the sequence {αn} to define polynomial

p by

p(t) = µt3− (λ +3µ+b)t2 +(2λ+3µ +b(λ+1))t− (µ +λ). (1.2.11)

We have that p(0) = −(µ + λ) < 0 and p(1) = bλ > 0 for λ > 0. It follows from the

intermediate value theorem that p has roots in (0,1). Denote the smallest root by δ. If
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λ = 0, then p(t) = (t −1)(µt2 − (2µ+ b)t + µ). Hence, we can choose the smallest root of

p given by
2µ+b−

√
b2+4µb

2µ
∈ (0,1) to be δ in this case. Note that in particular for Newton’s

method and secant method, respectively, we have that

p(t) = (t−1)(2t2− (b+4)t +2)

and

p(t) = (t −2)(t2− (b+2)t +1).

Hence, we obtain, respectively that

δ =
4

b+4+
√

b2 +8b
(1.2.12)

and

δ =
2

b+2+
√

b2 +4b
. (1.2.13)

Notice also that

p(t)≤ 0 for each t ∈ (−∞,δ]. (1.2.14)

Next, we study the convergence of these sequences starting from {δn}.

Lemma 1.2.1. Let δ1 > 0, δ2 > 0 and b ≥ 1 be given parameters. Suppose that

0 < δ2 ≤ δ1 ≤ δ, (1.2.15)

where δ was defined in (1.2.11). Let {δn} be the scalar sequence defined by (1.2.10). Then,

the following assertions hold:

(A1) If

δ1 = δ2 (1.2.16)

then,

δn = δ for each n = 1,2,3, · · · (1.2.17)

(A2) If

0 < δ2 < δ1 < δ (1.2.18)

then, sequence {δn} is decreasing and converges to 0.

Proof. It follows from (1.2.10) and δ2 ≤ δ1 that δ3 > 0. We shall show that

δ3 ≤ δ2. (1.2.19)

In view of (1.2.10) for n = 1, it suffices to show that

p1(δ2) = µ(1−δ1)δ2
2 − (1−δ1)(2µ+λ+b)δ2 − (µ+(1+b)λ)δ1 +µ+λ ≥ 0. (1.2.20)

The discriminant ∆ of the quadratic polynomial p1 is given by

∆ = (1−δ1)
[
(1−δ1)(λ2 +2(2µ+λ)b+b2)+4µλbδ1

]
> 0. (1.2.21)
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Hence, p1 has two distinct roots δs and δl with δs < δl . Polynomial p1 is quadratic with

respect to δ2 and the leading coefficient (µ(1−δ1)) is positive. Therefore, we have that

p1(t)≥ 0 for each t ∈ (−∞,δs]∪ [δl,+∞)

and

p1(t)≤ 0 for each t ∈ [δs,δl].

Then, (1.2.20) shall be true, if

δ2 ≤ δs. (1.2.22)

By hypothesis (1.2.15) we have δ1 ≤ δ0. Then by (1.2.14) we get that p(δ1) ≤ 0 ⇒ δ1 ≤
δs ⇒(1.2.22), since δ2 ≤ δ1 by hypothesis (1.2.15). Hence, we showed (1.2.19). Therefore,

relation

0 < δk+1 < δk, (1.2.23)

holds for k = 2. Then, we must show that

0 < δk+2 < δk+1. (1.2.24)

It follow from (1.2.10), δk < 1 and δk+1 < 1 that δk+2 > 0. Then, in view of (1.2.10) the

right hand side of (1.2.24) is true, if

bδk+1 [λδk +(1−δk)δk+1]

(1−δk)(1−δk+1) [λ+µ(1−δk+1)]
≤ δk+1 (1.2.25)

or

p(δk)≤ 0, (1.2.26)

which is true by (1.2.14) since δk ≤ δ1 ≤ δ. The induction for (1.2.23) is complete. If

δ1 = δ2 = δ, then it follows from (1.2.10) for n = 1 that δ3 = δ and δn = δ for n = 4,5, · · ·,
which shows (1.2.17). If δ2 < δ1, the sequence {δn} is decreasing, bounded below by 0

and as such it converges to its unique largest lower bound denoted by γ. We then have from

(1.2.10) that

γ =
bγ [λγ+(1− γ)γ]

(1− γ)2 [λ+µ(1− γ)]
⇒ γ = δ or γ = 0. (1.2.27)

But γ ≤ δ1 ≤ δ. Hence, we conclude that γ = 0. �

Next, we present three results for the convergence of sequences {αn}, {βn} and {γn}
under conditions that are not all the same with the ones in Lemma 2.1 (see e.g. (1.2.28)).

Lemma 1.2.2. Suppose that the hypothesis (1.2.18) is satified. Then, the sequence {γn} is

decreasingly convergent and sequences {αn} and {βn} are increasingly convergent. More-

over, the following estimate holds:

l0c < 1. (1.2.28)

Proof. Using (1.2.2) and (1.2.9) we get that

γn = (1−δn)γn−1 = · · ·= (1−δn) · · ·(1−δ1)γ0 = (1−δn) · · ·(1−δ1)γ0 > 0.
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In view of (1.2.18) we have in turn that

δ1 > 0 ⇒ 1− γ1

γ0

> 0

⇒ γ0 =
1− (µ +λ)L0c

µ+λ
> 0

⇒ γ0 =
1− l0c

(µ+λ)[1+(µ+λ−1)l0c]
> 0

⇒ (2.28)

and by the preceding equation we deduce that γn > 0 for each n = 1,2, . . . and

γn < γn−1 for each n = 1,2, . . .,

since δn < 1. Hence, sequence {γn} converges to its unique largest lower bound denoted by

γ∗. We also have that βn = 1
µ+λ −γn < 1

µ+λ . Thus, the sequence {βn} is increasing, bounded

from above by 1
µ+λ and as such it converges to its unique least upper bound denoted by β∗

.

Then, in view of (1.2.5) sequence {αn} is also increasing, bounded from above by
L−1

0

µ+λ and

such it also converges to its unique least upper bound denoted by α∗. �

Lemma 1.2.3. Suppose that (1.2.15) and (1.2.16) are satisfied. Then, the following asser-

tions hold for each n = 1,2, · · ·
δn = δ

γn = (1−δ)nγ0, γ∗ = lim
n→∞

γn = 0,

βn =
1

µ+λ
− (1−δ)nγ0, β∗ = lim

n→∞
βn =

1

µ+λ

and

αn =
1

L0

[
1

µ+λ
− (1−δ)nγ0

]
, α∗ = lim

n→∞
αn =

1

L0(µ+λ)

Corollary 1.2.4. Suppose that the hypotheses of Lemma 2.1 and Lemma 2.2 hold. Then,

sequence {αn} defined in (1.2.1) is nondecreasing and converges to

α∗ = β∗ 1+(µ+λ−1)l0c

l0
.

Next, we present lower and upper bounds on the limit point α∗.

Lemma 1.2.5. Suppose that the condition (1.2.18) is satisfied. Then, the following assertion

holds

b1
1 ≤ α∗ ≤ b1

2, (1.2.29)

where

b1
1 =

1+(µ +λ−1)l0c

l0

[
1

µ+λ
−exp

(
−2

(
δ1

2−δ1

+
δ2

2−δ2

))]
,
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b1
2 =

1+(µ+λ−1)l0c

l0

[
1

µ+λ
−exp(δ∗)

]
, (1.2.30)

δ∗ = −
[

1

1−δ1

(
δ1 +

δ2

1− r

)
+ ln

(
(µ+λ)(1− (µ+λ−1)l0c)

1− l0c

)]

and

r = b
λδ1 +δ2(1−δ1)

(1−δ1)(1−δ2)(λ+µ(1−δ2))
.

Proof. Using (1.2.18) and (1.2.28) we have that 0 < δ3 < δ2 < δ1. Let us assume that

0 < δk+1 < δk < · · ·< δ1. Then, it follows from the induction hypotheses and (1.2.34) that

δk+2 = δk+1b
δk +δk+1(1−δk)

(1−δk)(1−δk+1)(2−δk+1)
< rδk+1 < r2δk ≤ ·· · ≤ rk−1δ3 ≤ rkδ2.

We have that

γ∗ = lim
n→∞

γn =
∞

∏
i=1

(1−δn)γ0.

This is equivalent to

ln

(
1

γ∗

)
=

∞

∑
n=1

ln

(
1

1−δn

)
+ ln

(
(µ+λ)(1+(µ+λ−1)l0c)

1− l0c

)
,

recalling that γ0 = (1−l0c)/((µ+λ)(1+(µ+λ−1)l0c)). We shall use the following bounds

for ln t, t > 1:

2

(
t −1

t +1

)
≤ ln t ≤ t2−1

2t
.

First, we shall find an upper bound for ln(1/γ∗). We have that

ln(1/γ∗) ≤
∞

∑
n=1

δn(2−δn)

2(1−δn)
+ ln

(
(µ+λ)(1+(µ+λ−1)l0c)

1− l0c

)

≤ 1
1−δ1

∞

∑
n=1

δn + ln

(
(µ+λ)(1+(µ+λ−1)l0c)

1− l0c

)

≤ 1
1−δ1

(δ1 +δ2 +δ3 + · · ·)+ ln
(

(µ+λ)(1+(µ+λ−1)l0c)
1−l0c

)

≤ 1
1−δ1

(δ1 +δ2 + rδ2 + · · ·+ rnδ2 + · · ·)+ ln
(

(µ+λ)(1+(µ+λ−1)l0c)
1−l0c

)

≤ 1
1−δ1

(
δ1 +δ2(r + r2 + · · ·+ rn + · · ·

)
+ ln

(
(µ+λ)(1+(µ+λ−1)l0c)

1−l0c

)

≤ 1
1−δ1

(
δ1 + δ2

1−r

)
+ ln

(
(µ+λ)(1+(µ+λ−1)l0c)

1−l0c

)
= −δ∗.

As β∗ = 1/(µ+λ)− γ∗ and α∗ = L−1
0 β∗

, we obtain the upper bound in (1.2.33). Moreover,

in order to obtain the lower bound for ln(1/γ∗), we have that

ln(1/γ∗) ≥ 2
∞

∑
n=1

δn

2−δn

> 2

(
δ1

2−δ1

+
δ2

2−δ2

)
,

which implies the lower bound in (1.2.33). �

From now on we shall denote by (C1) the hypothesis of Lemma 2.1 and Lemma 2.2.



8 Ioannis K. Argyros and Á. Alberto Magreñán

Remark 1.2.6. (a) Let us introduce the notation

cN = αN−1 −αN−2, νN = αN −αN−1

for some integer N ≥ 1. Notice that c1 = α0−α−1 = c and ν1 = α1−α0 = ν. The re-

sults in the preceding Lemmas can be weakened even further as follows. Consider the

convergence criteria (CN
∗ ) for N > 1: (C1) with c,ν replaced by cN ,νN , respectively

α−1 < α0 < α1 < · · ·< αN < αN+1,

l0
[
µ(αN+1 −cN)+λ(αN −cN)+cN

]
< 1.

Then, the preceding results hold with c,ν,δ1,δ2,b1
1,b1

2 replaced, respectively by

cN ,νN ,δN ,δN+1,bN
1 ,bN

2 .

(b) Notice that if

l0 [µ(αn+1 −c)+λ(αn −c)+c] < 1 holds for each n = 0,1,2, · · · , (1.2.31)

then, it follows from (1.2.1) that sequence {αn} is increasing, bounded from above by
1+(µ+λ−1)l0c

l0(µ+λ)
and as such it converges to its unique least upper bound α∗. Criterion

(1.2.31) is the weakest of all the preceding convergence criteria for sequence {αn}.

Clearly all the preceding criteria imply (1.2.31). Finally, define the criteria for N ≥ 1

(IN) =

{
(CN

∗ )
(1.2.31) if criteria (CN

∗ ) fail.
(1.2.32)

Lemma 1.2.7. Suppose that the conditions (1.2.18) and (1.2.28) hold. Then, the following

assertion holds

b1
1 ≤ α∗ ≤ b1

2, (1.2.33)

where

b1
1 =

1+(µ +λ−1)l0c

l0

[
1

µ+λ
−exp

(
−2

(
δ1

2−δ1

+
δ2

2−δ2

))]
,

b1
2 =

1+(µ+λ−1)l0c

l0

[
1

µ+λ
−exp(δ∗)

]
, (1.2.34)

δ∗ = −
[

1

1−δ1

(
δ1 +

δ2

1− r

)
+ ln

(
(µ+λ)(1− (µ+λ−1)l0c)

1− l0c

)]

and

r = b
λδ1 +δ2(1−δ1)

(1−δ1)(1−δ2)(λ+µ(1−δ2))
.

Proof. Using (1.2.18) and (1.2.28) we have that 0 < δ3 < δ2 < δ1. Let us assume that

0 < δk+1 < δk < · · ·< δ1. Then, it follows from the induction hypotheses and (1.2.34) that

δk+2 = δk+1b
δk +δk+1(1−δk)

(1−δk)(1−δk+1)(2−δk+1)
< rδk+1 < r2δk ≤ ·· · ≤ rk−1δ3 ≤ rkδ2.
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We have that

γ∗ = lim
n→∞

γn =
∞

∏
i=1

(1−δn)γ0.

This is equivalent to

ln

(
1

γ∗

)
=

∞

∑
n=1

ln

(
1

1−δn

)
+ ln

(
(µ+λ)(1+(µ+λ−1)l0c)

1− l0c

)
,

recalling that γ0 = (1−l0c)/((µ+λ)(1+(µ+λ−1)l0c)). We shall use the following bounds

for ln t, t > 1:

2

(
t −1

t +1

)
≤ ln t ≤ t2−1

2t
.

First, we shall find an upper bound for ln(1/γ∗). We have that

ln(1/γ∗) ≤
∞

∑
n=1

δn(2−δn)

2(1−δn)
+ ln

(
(µ+λ)(1+(µ+λ−1)l0c)

1− l0c

)

≤ 1
1−δ1

∞

∑
n=1

δn + ln

(
(µ+λ)(1+(µ+λ−1)l0c)

1− l0c

)

≤ 1
1−δ1

(δ1 +δ2 +δ3 + · · ·)+ ln
(

(µ+λ)(1+(µ+λ−1)l0c)
1−l0c

)

≤ 1
1−δ1

(δ1 +δ2 + rδ2 + · · ·+ rnδ2 + · · ·)+ ln
(

(µ+λ)(1+(µ+λ−1)l0c)
1−l0c

)

≤ 1
1−δ1

(
δ1 +δ2(r + r2 + · · ·+ rn + · · ·

)
+ ln

(
(µ+λ)(1+(µ+λ−1)l0c)

1−l0c

)

≤ 1
1−δ1

(
δ1 + δ2

1−r

)
+ ln

(
(µ+λ)(1+(µ+λ−1)l0c)

1−l0c

)
= −δ∗.

As β∗ = 1/(µ+λ)− γ∗ and α∗ = L−1
0 β∗

, we obtain the upper bound in (1.2.33). Moreover,

in order to obtain the lower bound for ln(1/γ∗), we have that

ln(1/γ∗) ≥ 2
∞

∑
n=1

δn

2−δn

> 2

(
δ1

2−δ1

+
δ2

2−δ2

)
,

which implies the lower bound in (1.2.33). �

1.3. Semilocal Convergence of the Secant-Type Method

In this section, we first present the semilocal convergence of the secant-type method using

{αn} (defined in (1.2.1)) as a majorizing sequence. Let U(x,R) stand for an open ball

centered at x ∈ X with radius R > 0. Let U(x,R) denote its closure. We shall study the

secant method for triplets (F ,x−1,x0) belonging to the class K = K (l0, l,ν,c,λ,µ) defined

as follows.

Definition 1.3.1. Let l0, l,ν,c,λ,µ be constants satisfying the hypotheses (IN) for some fixed

integer N ≥ 1. A triplet (F ,x−1,x0) belongs to the class K = K (l0, l,ν,c,λ,µ) if:

(D1) F is a nonlinear operator defined on a convex subset D of a Banach space X with

values in a Banach space Y .
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(D2) x−1 and x0 are two points belonging to the interior D0 of D and satisfying the in-

equality

‖x0 −x−1‖ ≤ c.

(D3) There exists a sequence {θn} of real numbers and λ,µ such that |1− θn| ≤ λ and

1+ |θn| ≤ µ for each n = 0,1,2, · · ·.

(D4) F is Fréchet-differentiable on D0 and there exists an operator δF : D0 × D0 →
Ł(X ,Y) such that A−1 = δF (x0,y0)

−1 ∈ Ł(Y,X) for all x,y, z∈ D then, the following

hold

‖A−1F (x0)‖ ≤ ν,

‖A−1(δF (x,y)−F ′(z))‖ ≤ l(‖x− z‖+‖y− z‖)
and

‖A−1(δF (x,y)−F ′(x0))‖ ≤ l0(‖x−x0‖+‖y−x0‖),
where y0 = θ0x0 +(1−θ0)x−1.

(D5)

U(x0,α∗
0)⊆ Dc = {x ∈ D : F is continuous at x} ⊆ D,

where α∗
0 = (µ+λ−1)(α∗−c) and α∗ is given in Lemma 2.3.

Next, we present the semilocal convergence result for the secant method.

Theorem 1.3.2. If (F ,x−1,x0)∈ K (l0, l,ν,c,λ,µ) then, the sequence {xn} (n ≥−1) gener-

ated by the secant-type method is well defined, remains in U(x0,α∗
0) for each n = 0,1,2, · · ·

and converges to a unique solution x∗ ∈ U(x0,α∗− c) of (1.1.1). Moreover, the following

assertions hold for each n = 0,1,2, · · ·

‖xn −xn−1‖ ≤ αn −αn−1 (1.3.1)

and

‖x∗−xn‖ ≤ α∗−αn, (1.3.2)

where sequence {αn} (n ≥ 0) is given in (1.2.1). Furthermore, if there exists R such that

U(x0,R)⊆ D, R ≥ α∗−c and l0(α∗−c+R)+‖A−1(F −1(x0)−A)‖< 1, (1.3.3)

then, the solution x∗ is unique in U(x0,R).

Proof. First, we show that M = δF (xk+1,yk+1) is invertible for xk+1,yk+1 ∈U(x0,α∗
0). By

(D2),(D3) and (D4), we have that

‖yk+1−x0‖ ≤ ‖θk(xk+1−x0)+(1−θk+1)(xk −x0)‖

≤ |θk+1|‖xk+1−x0‖+ |1−θk+1|‖xk −x0‖ ≤ (µ−1)(α∗−c)+λ(α∗−c) = α∗
0
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and

‖I−A−1M ‖ = ‖A−1(M −A)‖
≤ ‖A−1(M −F ′(x0))‖+‖A−1(F ′(x0)−A)‖
≤ l0(‖xk+1−x0‖+‖yk+1 −x0‖+‖x0 −x−1‖)
≤ l0(‖xk+1−x0‖+ |θk+1|‖xk+1−x0‖+ |1+θk+1|‖xk+1−x0‖+c)

≤ l0(µ(αk+1−c)+λ(αk+1−c)+c) < 1

(1.3.4)

Using the Banach Lemma on invertible operators [9], [10], [15], [18], [20] and (1.3.4), we

deduce that M is invertible and

‖M −1A‖ ≤ (1− l0(µ(αk+1−c)+λ(αk+1−c)+c))−1. (1.3.5)

By (D4), we have

‖A−1(F ′(u)−F ′(v))‖ ≤ 2l‖u−v‖, u,v ∈ D0. (1.3.6)

We can write the identity

F ′(x)−F ′(y) =

Z 1

0
F ′(y+ t(x−y))dt(x−y). (1.3.7)

Then, for all x,y,u,v ∈ D0, we obtain

‖A−1(F (x)−F (y)−F ′(u)(x−y))‖ ≤ l(‖x−u‖+‖y−u‖)‖x−y‖ (1.3.8)

and

‖A−1(F (x)−F (y)−δF (u,v)(x−y))‖ ≤ l(‖x−v‖+‖y−v‖+‖u−v‖)‖x−y‖. (1.3.9)

By a continuity argument (1.3.6)-(1.3.9) remain valid if x and/or y belong to Dc. Next,

we show (1.3.1). If (1.3.1) holds for all n ≤ k and if {xn} (n ≥ 0) is well defined for

n = 0,1,2, · · · ,k, then

‖xn −x0‖ ≤ αn −α0 < α∗−α0, n ≤ k. (1.3.10)

That is (1.1.2) is well defined for n = k + 1. For n = −1 and n = 0, (1.3.1) reduces to

‖x−1−x0‖ ≤ c and ‖x0−x1‖ ≤ ν. Suppose (1.3.1) holds for n = −1,0,1, · · · ,k (k ≥ 0). By

(1.3.5), (1.3.9), and

F (xk+1) = F (xk+1)−F (xk)−Ak(xk+1xk) (1.3.11)

we obtain in turn the following estimates

‖A−1F (xk+1)‖ = ‖A−1(δF (xk+1,xk)−Ak)(xk+1−xk)‖
≤
(
‖A−1(δF (xk+1,xk)−F ′(xk))‖+‖A−1(F ′(xk)−Ak)‖

)
‖(xk+1−xk)‖

≤ l [‖(xk+1−xk)‖+‖(xk −yk)‖]‖(xk+1−xk)‖
≤ l(αk+1−αk + |1−θk|(αk −αk−1)(αk+1−αk))

(1.3.12)
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and
‖xk+2−xk+1‖ = ‖A−1

k+1F (xk+1)‖
≤ ‖A−1

k+1A‖‖A−1F (xk+1)‖
≤ l(αk+1−αk+|1−θk|(αk−αk−1))

1−l0[(1+|θk+1|)(αk+1−c)+|1−θk+1 |(αk−c)+c](αk+1−αk)

≤ αk+2−αk+1.

The induction for (1.3.1) is complete. It follows from (1.3.1) and Lemma 2.1 that {xn}
(n ≥−1) is a complete sequence in a Banach space X and as such it converges to some x∗ ∈
U(x0,α∗− c) (since U(x0,α∗− c) is a closed set). By letting k → ∞ in (1.3.12), we obtain

F (x∗) = 0. Moreover, estimate (1.3.2) follows from (1.3.1) by using standard majoration

techniques [8, 12, 14]. Finally, to show the uniqueness in U(x0,R), let y∗ ∈ U(x0,R) be a

solution (1.1.1). Set

T =

Z 1

0
F ′(y∗ + t(y∗−x∗))dt

Using (D4) and (1.3.3) we get in turn that

‖A−1(A −T )‖ = l0(‖y∗−x0‖+‖x∗−x0‖)+‖A−1(F ′(x0)−A)‖
≤ l0 [(α∗−α0)+R]+‖A−1(F ′(x0)−A)‖< 1.

(1.3.13)

If follows from (1.3.13) and the Banach lemma on invertible operators that T −1 exists.

Using the identity:

F (x∗)−F ′(y∗) = T (x∗−y∗), (1.3.14)

we deduce that x∗ = y∗. �

Remark 1.3.3. If follows from the proof of Theorem 3.2 that sequences {rn}, {sn} defined

by





r−1 = 0, r0 = c, r1 = c+ν

r2 = r1 + l0(r1−r0+|1−θ0|(r0−r−1))(r1−r0)
1−l0((1+|θ1|)(r1−r0))

rn+2 = rn+1 +
l(rn+1−rn+|1−θn|(rn−rn−1))(rn+1−rn)

1−l0[(1+|θn+1 |)(rn+1−r0)+(|1−θn+1|)(rn−r0)+c]

(1.3.15)

and 



s−1 = 0, s0 = c, s1 = c+ν

s2 = s1 +
l0(s1−s0+λ(s0−s−1))(s1−s0)

1−l0(1+|θ1|)(s1−s0)

sn+2 = sn+1 +
l(sn+1−sn+λ(sn−sn−1))(sn+1−sn)
1−l0(µ(sn+1−s0)+λ(sn−s0))+c

(1.3.16)

respectively are more precise majorizing sequences for {xn}. Clearly, these sequences also

converge under the (IN) hypotheses.

A simple inductive argument shows that if l0 < l for each n = 2,3, · · ·

rn < sn < αn (1.3.17)

rn+1− rn < sn+1 − sn < αn+1−αn (1.3.18)

and

r∗ = lim
n→∞

rn ≤ s∗ = lim
n→∞

sn ≤ α∗ = lim
n→∞

αn. (1.3.19)
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In practice, one must choose {θn} so that the best error bounds are obtained (see also

Section 4). Note also that sequences {rn} or {sn} may converge under even weaker

hypotheses. The sufficient convergence criterion (1.2.15) determines the smallness of c

and r. This criterion can be solved for c and r ( see for example the h criteria or (1.3.29)

that follow). Indeed, let us demonstrate the advantages in two popular cases:

Case 1. Newton’s method. (i. e., if c = 0,λ = 0,µ = 1). Then, it can easily be seen that

{sn} (and consequently {rn}) converges provided that (see also [3])

h2 = l2ν ≤ 1, (1.3.20)

where

l2 =
1

4

(
4κ0 +

√
κ0κ+

√
κ0κ+8κ2

0

)
, (1.3.21)

whereas sequence {xn} converges, if

h1 = l1ν ≤ 1 (1.3.22)

where

l1 =
1

4

(
4κ0 +κ +

√
κ2

0 +8κκ0

)
, (1.3.23)

In the case κ0 = κ (i. e. b = 1), we obtain the famous for its simplicity and clarity Kan-

torovich sufficient convergent criteria [2] given by

h = 2κν ≤ 1. (1.3.24)

Notice however that

h ≤ 1 ⇒ h1 ≤ 1 ⇒ h2 ≤ 1 (1.3.25)

but not necessarily vice versa unless if κ0 = κ. Moreover, we have that

h1

h
→ 1

4
,

h1

h
→ 0,

h2

h1

→ 0 as
κ0

κ
→ 0 (1.3.26)

Case 2. Secant method. (i. e. for θn = 0). Schmidt [20], Potra-Ptáck [15], Dennis [8],

Ezquerro el at. [9], used the majorizing sequence {αn} for θn ∈ [0,1] and l0 = l. That is,

they used the sequence {tn} given by





t−1 = 0, t0 = c, t1 = c+ν

tn+2 = tn+1 + l(tn+1−tn−1)(tn+1−tn)
1−l(tn−tn+1+c)

(1.3.27)

whereas our sequence {αn} reduces to





α−1 = 0, α0 = c, α1 = c+ν

αn+2 = αn+1 + l(αn+1−αn−1)(αn+1−αn)
1−l0(αn+1−αn+c)

(1.3.28)
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Then, in case l0 < l our sequence is more precise (see also (1.3.17)-(1.3.19)). Notice also

that in the preceding references the sufficient convergence criterion associated to {tn} is

given by

lc+2
√

lν ≤ 1 (1.3.29)

Our sufficient convergence criteria can be also weaker in this case (see also the numerical

examples). It is worth nothing that if c = 0 (1.3.29) reduces to (1.3.24) (since κ = 2l).

Similar observations can be made for other choices of parameters.

1.4. Local Convergence of the Secant-Type Method

In this section, we present the local convergence analysis of the secant-type method. Let

x∗ ∈ X be such that F (x∗) = 0 and F ′(x∗)−1 ∈ Ł(Y ,X ). Using the identities

xn+1−x∗ = (A−1
n F ′(x∗))F′(x∗)−1

[
(δF (xn,yn)−F ′(xn))+(F ′(xn)−δF (xn,x∗))

]
(xn−x∗),

yn −xn = (1−θn)(xn−1−xn),

and

yn −x∗ = θn(xn −x∗)+(1−θn)(xn−1−x∗)

we easily arrive at:

Theorem 1.4.1. Suppose that (D1) and (D3) hold. Moreover, suppose that there exist x∗ ∈
D,K0 > 0,K > 0 such that F (x∗) = 0, F ′(x∗)−1 ∈ Ł(Y ,X ),

‖F ′(x∗)−1(δF (x,y)−F ′(x∗))‖ ≤ K0(‖x−x∗‖+‖y−x∗‖)

‖F ′(x∗)−1(δF (x,y)−F ′(z))‖ ≤ K(‖x− z‖+‖y− z‖) for each x,y, z ∈ D,

and

U(x∗,R∗
0) ⊆ D,

where

R∗ =
1

(2λ+1)K +(λ +µ)K0

and

R∗
0 = (µ+λ−1)R∗.

Then, sequence {xn} generated by the secant-type method is well defined, remains in

U(x∗,R∗) for each n = −1,0,1,2, · · · and converges to x∗ provided that x−1,x0 ∈U(x∗,R∗).

Moreover, the following estimates hold

‖xn+1 −x∗‖ ≤ ên‖xn −x∗‖ ≤ en‖xn −x∗‖ ≤ en‖xn −x∗‖,

where

ên =
K(‖xn −x∗‖+ |1−θn|‖xn−1−xn‖

1−K0([(1+ |θn|)‖xn−x∗‖+ |1−θn|‖xn−1−x∗‖]

en =
K(‖xn−x∗‖+λ‖xn−1−xn‖

1−K0([(µ‖xn−x∗‖+λ‖xn−1−x∗‖]
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en =
K(2λ+1)R∗

1−K0(λ+µ)R∗

and

K =

{
κ0, if n = 0

κ, if n > 0

Remark 1.4.2. Comments similar to the one given in Remark 3.3 can also follow for this

case. For example, notice again that in the case of Newton’s method

R∗ =
2

2κ0 +κ
,

whereas the convergence ball given independently by Rheinboldt [18] and Traub [19] is

given by

R1
∗ =

2

3κ
.

Note that

R1
∗ ≤ R∗.

Strict inequality holds in the preceding inequality if κ0 < κ. Moreover, the error bounds are

tighter, if κ0 < κ. Finally, note that κ0

κ can be arbitrarily small and

R∗
R1∗

→ 3 as
κ0

κ
→ 0.

1.5. Numerical Examples

Related to the semilocal case we present the following examples.

Example 1.5.1. Let X = Y = R and let consider the following function

x3 −0.49 = 0, (1.5.1)

and we are going to apply the secant method (λ = 1, µ = 1, θn = 0) to find the solution of

(1.5.1). We take the starting points x−1 = 1.14216 · · ·, x0 = 1 and we consider the domain

Ω = B(x0,2). In this case, we obtain

ν = 0.147967 · · · , (1.5.2)

ν = 0.14216 · · · , (1.5.3)

l = 2.61119 · · · , (1.5.4)

l0 = 1.74079 · · · . (1.5.5)

Notice that hypothesis lc + 2
√

lν ≤ 1 is not satisfied, but hypotheses of Theorem 3.2 are

satisfied, so the convergence of secant method starting form x0 ∈ B(x0,2) converges to the

solution of (1.5.1).
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Example 1.5.2. Let X = Y = C [0,1], equipped with the max-norm. Consider the following

nonlinear boundary value problem

{
u′′ = −u3 − γ u2

u(0) = 0, u(1) = 1.

It is well known that this problem can be formulated as the integral equation

u(s) = s+

Z 1

0
Q (s, t) (u3(t)+ γ u2(t)) dt (1.5.6)

where, Q is the Green’s function:

Q (s, t) =

{
t (1− s), t ≤ s

s (1− t), s < t.

We observe that

max
0≤s≤1

Z 1

0
|Q (s, t)|dt =

1

8
.

Then problem (1.5.6) is in the form (1.1.1), where, F : D −→ Y is defined as

[F(x)] (s) = x(s)− s−
Z 1

0
Q (s, t) (x3(t)+ γ x2(t)) dt.

We define the divided difference by δF(x,y) =

Z 1

0
F ′(y+ t(x−y))dt. Set u0(s) = s and

D = U(u0,R0). It is easy to verify that U(u0,R0)⊂U(0,R0 +1) since ‖ u0 ‖= 1. If 2 γ < 5,

the operator F ′ satisfies conditions of Theorem 3.2, with

θn = 0, ν =
1+ γ

(1− l0c)(5−2 γ)
, l =

γ+6 R0 +3

(1− l0c)(5−2 γ)
, l0 =

2 γ+3 R0 +6

(1− l0c)(5−2 γ)
.

Since ‖δF(x0,x−1)
−1F(x0)‖ ≤ ‖δF(x0,x−1)

−1F ′(x0)‖‖F′(x0)F(x0)‖ ≤ 1
(1−l0c)

1+γ
5−2γ . Note

that l0 < l. Therefore, the hypothesis of Kantorovich may not be satisfied, but conditions of

Theorem 3.2 may be satisfied.

Finally, for the local case we study the following one.

Example 1.5.3. Let X = Y = R3, D = U(0,1), x∗ = (0,0,0) and define function F on D by

F(x,y, z) = (ex −1,y2 +y, z). (1.5.7)

We have that for u = (x,y, z)

F ′(u) =




ex 0 0

0 2y+1 0

0 0 1


 , (1.5.8)

Using the norm of the maximum of the rows and (1.5.7)–(1.5.8) we see that since F ′(x∗) =
diag{1,1,1}, we can define parameters for Newton’s method by

K = e/2, (1.5.9)
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K0 = 1, (1.5.10)

R∗ =
2

e+4
, (1.5.11)

R∗
0 = R∗, (1.5.12)

since θn = 1, µ = 2, λ = 0. Then the Newton’s method starting form x0 ∈B(x∗,R∗) converges

to a solution of (1.5.7). Note that using only Lipschitz condition we obtain the Rheinboldt

or Traub ball R∗
T R = 2

3e
< R∗.

Example 1.5.4. In this example we present an application of the previous analysis to the

Chandrasekhar equation:

x(s) = 1+
s

4
x(s)

Z 1

0

x(t)

s+ t
dt, s ∈ [0,1], (1.5.13)

which arises in the theory of radiative transfer [7]; x(s) is the unknown function which

is sought in C[0,1]. The physical background of this equation is fairly elaborate. It was

developed by Chandraseckhar [7] to solve the problem of determination of the angular

distribution of the radiant flux emerging from a plane radiation field. This radiation field

must be isotropic at a point, that is the distribution in independent of direction at that point.

Explicit definitions of these terms may be found in the literature [7]. It is considered to be

the prototype of the equation,

x(s) = 1+λsx(s)
Z 1

0

ϕ(s)

s+ t
x(t)dt, s ∈ [0,1],

for more general laws of scattering, where ϕ(s) is an even polynomial in s with

Z 1

0
ϕ(s)ds ≤ 1

2
.

Integral equations of the above form also arise in the other studies [7]. We determine where

a solution is located, along with its region of uniqueness.

Note that solving (3.7) is equivalent to solve F(x) = 0, where F : C[0,1]→C[0,1] and

[F(x)](s) = x(s)−1− s

4
x(s)

Z 1

0

x(t)

s+ t
dt, s ∈ [0,1]. (1.5.14)

To obtain a numerical solution of (3.7), we first discretize the problem and approach

the integral by a Gauss-Legendre numerical quadrature with eight nodes,

Z 1

0
f (t)dt ≈

8

∑
j=1

w j f (t j),

where

t1 = 0.019855072, t2 = 0.101666761, t3 = 0.237233795, t4 = 0.408282679,
t5 = 0.591717321, t6 = 0.762766205, t7 = 0.898333239, t8 = 0.980144928,

w1 = 0.050614268, w2 = 0.111190517, w3 = 0.156853323, w4 = 0.181341892,
w5 = 0.181341892, w6 = 0.156853323, w7 = 0.111190517, w8 = 0.050614268.
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If we denote xi = x(ti), i = 1,2, . . .,8, equation (3.7) is transformed into the following non-

linear system:

xi = 1+
xi

4

8

∑
j=1

ai jx j, i = 1,2, . . .,8,

where, ai j =
tiw j

ti + t j

.

Denote now x = (x1,x2, . . .,x8)
T , 1 = (1,1, . . .,1)T , A = (ai j) and write the last nonlin-

ear system in the matrix form:

x = 1+
1

4
x� (Ax), (1.5.15)

where � represents the inner product. Set G(x) = x. If we choose x0 = (1,1, . . .,1)T and

x−1 = (0,0, . . .,0)T . Assume sequence {xn} is generated by secant-type mtehods with dif-

ferent choices of θn. Table 1 gives the comparison results for ‖xn+1 − xn‖ equipped with

the max-norm for this example. The computational order of convergence (COC) is shown

in Table 1.5.1 for various methods. Here (COC) is defined in [1],[4] by

ρ ≈ ln

(‖xn+1−x?‖∞

‖xn −x?‖∞

)
/ ln

( ‖xn −x?‖∞

‖xn−1 −x?‖∞

)
, n ∈ N,

The last line in Table 1.5.1 shows the (COC).

Table 1.5.1. The comparison results of ‖xn+1−xn‖ for Example 3.3 using various

methods

n ‖xn+1 − xn‖ ‖xn+1 − xn‖ ‖xn+1 − xn‖ ‖xn+1 − xn‖
θn = 0, Newton θn = 1, secant θn = 2, Kurchatov θn = 1/2, midpoint

1 9.49639×10−6 4.70208×10−2 4.33999×10−1 1.42649×10−1

2 8.18823×10−12 7.77292×10−3 3.28371×10−2 1.51900×10−2

3 5.15077×10−24 5.14596×10−5 2.33370×10−3 1.66883×10−4

4 1.79066×10−48 3.89016×10−8 9.32850×10−6 1.34477×10−7

5 1.95051×10−97 1.77146×10−13 2.214411×10−9 1.03094×10−12

6 2.12404×10−195 5.35306×10−22 1.801201×10−15 5.63911×10−21

ρ 2.00032 1.61815 1.61854 1.61817
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Chapter 2

Efficient Steffensen-Type Algorithms

for Solving Nonlinear Equations

2.1. Introduction

In this chapter we are concerned with the problem of approximating a locally unique solu-

tion x? of an equation

F(x) = 0, (2.1.1)

where F is an operator defined on a non–empty, open subset Ω of a Banach space X with

values in a Banach space Y .

Many problems in computational sciences can be brought in the form of equation

(2.1.1). For example, the unknowns of engineering equations can be functions (differ-

ence, differential, and integral equations), vectors (systems of linear or nonlinear algebraic

equations), or real or complex numbers (single algebraic equations with single unknowns).

The solutions of these equations can rarely be found in closed form. That is why the most

commonly used solution method are iterative. The practice of numerical analysis is usually

connected to Newton-like methods [1,3,5,7–9, 10–16,18,19,21–27].

The study about convergence matter of iterative procedures is usually based on two

types: semilocal and local convergence analysis. The semilocal convergence matter is,

based on the information around an initial point, to give conditions ensuring the conver-

gence of the iterative method; while the local one is, based on the information around a

solution, to find estimates of the radii of convergence balls.

A classic iterative process for solving nonlinear equations is Chebyshev’s method (see

[5], [8], [17]):





x0 ∈ Ω,
yk = xk −F ′(xk)

−1 F(xk),

xk+1 = yk − 1
2

F ′(xk)
−1F ′′(xk)(yk −xk)

2, k ≥ 0.

This one-point iterative process depends explicitly on the two first derivatives of F (namely,

xk+1 = ψ(xk,F(xk),F ′(xk),F ′′(xk))). Ezquerro and Hernández introduced in [15] some

modifications of Chebyshev’s method that avoid the computation of the second derivative

of F and reduce the number of evaluations of the first derivative of F . Actually, these
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authors have obtained a modification of the Chebyshev iterative process which only need

to evaluate the first derivative of F, (namely, xk+1 = ψ(xk,F ′(xk)), but with third-order of

convergence. In this chapter we recall this method as the Chebyshev–Newton–type method

(CNTM) and it is written as follows:





x0 ∈ Ω,

yk = xk −F ′(xk)
−1 F(xk),

zk = xk +a (yk −xk)

xk+1 = xk −
1

a2
F ′(xk)

−1 ((a2 +a−1) F(xk)+F(zk)), k ≥ 0.

There is an interest in constructing families of iterative processes free of derivatives. To

obtain a new family in [8] we considered an approximation of the first derivative of F from

a divided difference of first order, that is, F ′(xk) ≈ [xk−1,xk,F], where, [x,y;F] is a divided

difference of order one for the operator F at the points x, y ∈ Ω. Then, we introduce the

Chebyshev–Secant–type method (CSTM)





x−1, x0 ∈ Ω,

yk = xk −B−1
k F(xk), Bk = [xk−1,xk;F],

zk = xk +a (yk −xk),

xk+1 = xk −B−1
k (b F(xk)+c F(zk)), k ≥ 0,

where a, b, c are non–negative parameters to be chosen so that sequence {xk} converges

to x?. Note that (CSTM) is reduced to the secant method (SM) if a = 0, b = c = 1/2, and

yk = xk+1. Moreover, if xk−1 = xk, and F is differentiable on Ω, then, F ′(xk) = [xk,xk;F],
and (CSTM) reduces to Newton’s method (NM).

We provided a semilocal convergence analysis for (CSTM) using recurrence sequences,

and also illustrated its effectiveness through numerical examples. Dennis [14], Potra [23],

Argyros [1]–[11], Ezquerro et al. [15] and others [16], [22], [25], have provided suffi-

cient convergence conditions for the (SM) based on Lipschitz–type conditions on divided

difference operator (see, also relevant works in [12]–[13], [17], [19], [20].

In this chapter, we continue the study of derivative free iterative processes. We introduce

the Steffensen-type method (STTM):





x0 ∈ Ω,

yk = xk −A−1
k F(xk), Ak = [xk,G(xk);F],

zk = xk +a (yk −xk),

xk+1 = xk −A−1
k (b F(xk)+c F(zk)), k ≥ 0,

where, G : X → X . Note that (STTM) reduces to (CNTM) if G(x) = x, b = a2+a−1
a2 and

c = 1
a2 provided that F is Fréchet-differentiable on Ω.

In the special case a = 0, b = c = 1
2
, xk+1 = yk the quadratic convergence of (CNTM) is

established in [15]. The semilocal convergence analysis of (CNTM) when Ak is replaced by

the more general Gk ∈ L(X ,Y ) is given by us in [8]. In the present chapter we provide a local

convergence analysis for (STTM). Then, we give numerical examples to show that (STTM)

is faster than (CSTM). In particular, three numerical examples are also provided. Firstly,

we consider a scalar equation where the main study of the chapter is applied. Secondly,
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we give the radius of convergence of (STTM) for a nonlinear integral equation. Thirdly,

we discretize a nonlinear integral equation and approximate a numerical solution by using

(STTM).

2.2. Local Convergence of (STTM)

In this section we provide a local convergence analysis for (STTM). The radius of conver-

gence is also found. The convergence order of (STTM) is at least quadratic if (1−a)c =
1−b and at least cubic if a = b = c = 1.

We need a result for zeros of functions related to our local convergence analysis of

(STTM).

Lemma 2.2.1. Suppose a∈ [0,1], b∈ [0,1],c≥ 0 are parameters satisfying (1−a)c = 1−b,

L0, L and N are positive constants with L0 ≤ L. Let ψ be a function defined on [0,+∞) by

ψ(r) = a2c(N +2)2L3r3 +2[1−b+ac+c(N +2)]a(N +2)L2r2(1− N+1
2

L0r)

+4[|1−ac|(N +2)+a(1−b)]Lr(1− N+1
2

L0r)2−8(1− N+1
2

L0r)3.
(2.2.1)

Then, ψ has a least positive zero in (0,R0] with R0 given by

R0 = 2
(N+2)L+(N+1)L0

. (2.2.2)

Proof. We shall consider two possibilities:

Case ac = 0. If a = 0, then function ψ further reduces to

ψ(r) = 4(1− N+1
2

L0r)2[(N +2)Lr−2(1− N+1
2

L0r)]

with minimal zero R0 given by (2.2), since

R0 <
2

(N +1)L0

. (2.2.3)

If c = 0, then b = 1 from the condition (1−a)c = 1−b and function ψ becomes

ψ(r) = 4(1− N+1
2

L0r)2[(N +2)Lr−2(1− N+1
2

L0r)]

leading to the same value for minimal zero R0.

Case ac > 0. Using the definition of R0 we get

1− N+1
2

L0R0 = (N+2)L
(N+2)L+(N+1)L0

.

Then, we have ψ(0) = −8 < 0 and

ψ(R0) = 4[|1−ac|(N +2)+a(1−b)] 2L
(N+2)L+(N+1)L0

( (N+2)L
(N+2)L+(N+1)L0

)2

+2[1−b+ac+c(N +2)] 4a(N+2)L2

[(N+2)L+(N+1)L0]2
(N+2)L

(N+2)L+(N+1)L0

+ 8a2c(N+2)2L3

((N+2)L+(N+1)L0)3 − 8(N+2)3L3

((N+2)L+(N+1)L0)3

= 8L3(N+2)2

((N+2)L+(N+1)L0)3 [(|1−ac|+ac−1)(N +2)+2a(1−b+ac)].

(2.2.4)
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If 1−ac≥ 0 the bracket in (2.2.4) becomes 2a(1−b+ac)= 2ac > 0, whereas if 1−ac≤ 0,

we have

2[(ac−1)(N +2)+a(1−b+ac)] = 2[(ac−1)(N +2)+ac] > 0.

Hence, in either case ψ(R0) > 0. It follows from the intermediate value theorem that there

exists a zero of function ψ in (0,R0) and the minimal such zero must satisfy 0 < R < R0.

That completes the proof of the lemma.

Remark 2.2.2. We are especially interested in the case when a = b = c = 1. It follows from

(2.2.1) that in this case we can write

ψ(r) = 8(1− N+1
2 L0r)3[(N +2)2( Lr

2(1− N+1
2 L0r)

)3 +(N +3)(N +2)( Lr

2(1− N+1
2 L0r)

)2

−1].
(2.2.5)

Define function φ on [0,+∞) by

φ(r) = (N +2)2r3 +(N +3)(N +2)r2−1. (2.2.6)

We have φ(0) = −1 < 0 and φ(1) = (N +2)2 +(N +3)(N +2)−1 > 0. Then, again by the

intermediate value theorem there exists R1 ∈ (0,1) such that φ(R1) = 0. Moreover, we get

φ′(r) = 3(N +2)r2 +2(N +3)(N +2)r > 0, f or r > 0.

That is φ is increasing on [0,+∞). Hence, φ crosses the x−axis only once. Therefore R1 is

the unique zero of φ in (0,1). In this case, by setting

LR

2(1− N+1
2 LoR)

= R1 (2.2.7)

and solving for R we obtain

R? := R = 2R1

L+(N+1)L0R1
. (2.2.8)

We can show the main result of this section concerning the local convergence of

(STTM).

Theorem 2.2.3. Suppose:

(a) F : Ω ⊆ X → Y and there exists divided difference [x,y;F] satisfying

[x,y;F](x−y) = F(x)−F(y) f or all x,y ∈ Ω; (2.2.9)

(b) Point x? is a solution of equation F(x) = 0, F ′(x?)−1 ∈ L(Y,X) and there exists a con-

stant L > 0 such that

‖F ′(x?)−1([x,y;F]− [u,v;F])‖ ≤ L

2
(‖x−u‖+‖y−v‖) f or all x,y,u,v ∈ Ω; (2.2.10)

(c) There exists a constant L0 > 0 such that

‖F ′(x?)−1([x,y;F]−F ′(x?))‖ ≤ L0

2
(‖x−x?‖+‖y−x?‖) f or all x,y ∈ Ω; (2.2.11)
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(d) G : Ω ⊆ X → X is continuous and such that G(x?) = x?.

(e) There exists N ∈ (0,1] such that

‖G(x)−G(x?)‖ ≤ N‖x−x?‖ f or all x ∈ Ω; (2.2.12)

(f) The relation (1−a)c = 1−b is true;

(g)

U(x?,R) = {x ∈ Ω : ‖x−x?‖ < R} ⊆ Ω, (2.2.13)

where R is the least positive zero of function ψ given in (2.2.1).

Then, sequence {xn} generated by (STTM) is well defined, remains in U(x?,R) for all n ≥ 0

and converges to x? provided that x0 ∈ U(x?,R). Moreover, the following error estimates

are satisfied for en = xn −x?

‖en+1‖ ≤ ξn‖en‖2 ≤ ξ‖en‖2, (2.2.14)

where

hn =
L

2(1− L0

2 (N +1)‖en‖)
, (2.2.15)

ξn = [|1−ac|(N +2)+a(1−b)]hn +[1−b+ac+c(N +2)]a(N +2)h2
n‖en‖

+a2c(N +2)2h3
n‖en‖2,

(2.2.16)
H = L

2(1− L0
2 (N+1)R)

, (2.2.17)

ξ = [|1−ac|(N +2)+a(1−b)]H +[1−b+ac+c(N +2)]a(N +2)H2R

+a2c(N +2)2H3R2.
(2.2.18)

In particular, if

a = b = c = 1, (2.2.19)

the optimal (STTM) is obtained which is cubically convergent. Furthermore, the error

estimates (2.2.14) are

‖en+1‖ ≤ λn‖en‖3 ≤ λ‖en‖3, (2.2.20)

where

λn = (N +2)h2
n[N +3+(N +2)hn‖en‖] (2.2.21)

and

λ = (N +2)H2[N +3+(N +2)HR?], (2.2.22)

where R? is given by (2.2.8).

Proof. We shall show the assertions of the theorem using induction. Let un = yn − x? and

vn = zn −x?(n ≥ 0). Using x0 ∈ U(x?,R), G(x?) = x? and (2.2.12) we obtain

‖G(x0)−x?‖ = ‖G(x0)−G(x?)‖ ≤ N‖x0 −x?‖ ≤ ‖x0 −x?‖ < R, (2.2.23)

which implies G(x0) ∈U(x?,R). Then, we have by (2.2.11) and (2.2.3):

‖F ′(x?)−1(F ′(x?)− [x0,G(x0);F])‖ ≤ L0

2
(‖x?−x0‖+‖x?−G(x0)‖)

= L0

2
(‖x?−x0‖+‖G(x?)−G(x0)‖)

≤ L0

2
(‖x?−x0‖+N‖x?−x0‖)

< L0

2
(N +1)R < L0

2
(N +1)R0 < 1.

(2.2.24)
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It follows from (2.2.24) and the Banach lemma on invertible operators that A−1
0 ∈ L(Y,X)

and
‖A−1

0 F ′(x?)‖ ≤ 1

1− L0
2 (N+1)‖e0‖

< 1

1− L0
2 (N+1)R

. (2.2.25)

Thus, y0 is well defined. Using (2.2.9) we have

F(x0) = F(x0)−F(x?) = −(F(x?)−F(x0))

= −[x?,x0;F](x?−x0) = [x?,x0;F ]e0

= [G(x?),x0;F]e0.
(2.2.26)

So,

u0 = y0 −x? = x0 −x? −A−1
0 F(x0)

= A−1
0 F ′(x?)F ′(x?)−1(A0− [x?,x0;F])e0.

(2.2.27)

By (2.2.10), (2.2.25) and (2.2.27) we get in turn

‖u0‖ ≤ ‖A−1
0 F ′(x?)‖L

2
(‖x0 −x?‖+‖G(x0)−x0‖)‖e0‖

≤ 1

1− L0
2

(N+1)‖e0‖
L
2
(‖x0−x?‖+‖G(x0)−G(x?)‖+‖x?−x0‖)‖e0‖

≤ 1

1− L0
2

(N+1)‖e0‖
L
2
(2‖x0−x?‖+N‖x? −x0‖)‖e0‖

≤ L(N+2)R0

2[1− L0
2

(N+1)R0]
‖e0‖ = ‖e0‖ < R,

(2.2.28)

which implies y0 ∈U(x?,R). Noting that

v0 = z0−x? = au0 +(1−a)e0, (2.2.29)

we get

‖v0‖ ≤ a‖u0‖+(1−a)‖e0‖ ≤ ‖e0‖ < R. (2.2.30)

As in (2.2.26), we have

F(z0) = [x?, z0;F]v0 = [G(x?), z0;F ]v0. (2.2.31)

Using (2.2.29) and (2.2.31), we get

e1 = e0 −A−1
0 (bF(x0)+cF(z0))

= A−1
0

(
[x0,G(x0);F]e0− (b[x?,x0;F ]e0 +c[x?, z0;F]v0)

)

= A−1
0

(
[x0,G(x0);F]e0−b[x?,x0;F]e0 −c[x?, z0;F ](au0 +(1−a)e0)

)

= A−1
0

(
[x0,G(x0);F]e0−b[x?,x0;F]e0 − (1−b)[x?, z0;F]e0 −ac[x?, z0;F]u0

)

= A−1
0

(
([x0,G(x0);F]− [x?,x0;F])e0 +(1−b)([x?,x0;F]− [x?, z0;F])e0

)

+acA−1
0 ([x?,x0;F ]− [x?, z0;F]+ [x0,G(x0);F]− [x?,x0;F])u0−acu0.

(2.2.32)

Define
D0 = A−1

0 ([x0,G(x0);F]− [x?,x0;F ]),

E0 = A−1
0 ([x?,x0;F ]− [x?, z0;F]),

(2.2.33)

then, we have from (2.2.27) that

u0 = D0e0. (2.2.34)
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Moreover, we can rewrite (2.2.32) as

e1 = D0e0 +(1−b)E0e0 +acE0u0 +acD0u0−acu0

= (1−ac)D0e0 +(1−b)E0e0 +acE0D0e0 +acD2
0e0.

(2.2.35)

We need to find upper bounds on the norms ‖D0‖ and ‖E0‖. Using (2.2.10) and (2.2.33)

we get in turn

‖D0‖ ≤ ‖A−1
0 F ′(x?)‖‖F′(x?)−1([x0,G(x0);F]− [x?,x0;F])‖

≤ 1

1− L0
2 (N+1)‖e0‖

L
2 (‖x0 −x?‖+‖G(x0)−x0‖)

≤
L
2 (N+2)‖x0−x?‖

1− L0
2

(N+1)‖x0−x?‖
= L(N+2)‖e0‖

2(1− L0
2

(N+1)‖e0‖)

(2.2.36)

and

‖E0‖ ≤ ‖A−1
0 F ′(x?)‖‖F ′(x?)−1([x?,x0;F]− [x?, z0;F])‖

≤
L
2
‖z0−x0‖

1− L0
2 (N+1)‖x0−x?‖

=
aL
2
‖y0−x0‖

1− L0
2 (N+1)‖e0‖

≤
aL
2

(‖u0‖+‖e0‖)
1− L0

2 (N+1)‖e0‖

≤
aL
2 (‖D0‖+1)‖e0‖

1− L0
2

(N+1)‖e0‖
≤ 1

1− L0
2

(N+1)‖e0‖
aL
2

[
L
2 (N+2)‖e0‖

1− L0
2

(N+1)‖e0‖
+1]‖e0‖

≤ aL2(N+2)‖e0‖2

4(1− L0
2 (N+1)‖e0‖)2

+
aL‖e0‖

2(1− L0
2 (N+1)‖e0‖)

.

(2.2.37)

Using (2.2.35)-(2.2.37) we get

‖e1‖ ≤ |1−ac| L(N+2)‖e0‖2

2(1− L0
2

(N+1)‖e0‖)
+ (1−b)aL2(N+2)‖e0‖3

4(1− L0
2

(N+1)‖e0‖)2
+ (1−b)aL‖e0‖2

2(1− L0
2

(N+1)‖e0‖)

+ac
( aL2(N+2)‖e0‖2

4(1− L0
2 (N+1)‖e0‖)2

+
aL‖e0‖

2(1− L0
2 (N+1)‖e0‖)

) L(N+2)‖e0‖2

2(1− L0
2 (N+1)‖e0‖)

+ac
L2(N+2)2‖e0‖3

4(1− L0
2 (N+1)‖e0‖)2

≤ h0|1−ac|(N +2)‖e0‖2 +(1−b)a(N +2)h2
0‖e0‖3 +(1−b)a‖e0‖2h0

+ac(ah2
0(N +2)‖e0‖2 +a‖e0‖h0)‖e0‖2(N +2)h0 +ac(N +2)2h2

0‖e0‖3

= ξ0‖e0‖2 ≤ ξ‖e0‖2 ≤ {[|1−ac|(N +2)+a(1−b)]HR

+[1−b+ac+c(N +2)]a(N +2)H2R2 +a2c(N +2)2H3R3}‖e0‖
= {[|1−ac|(N +2)+a(1−b)] LR

2(1−L0(
N+1

2
)R)

+[1−b+ac+c(N +2)]a(N +2) L2R2

4(1−L0(
N+1

2 )R)2

+a2c(N +2)2 L3R3

8(1−L0(
N+1

2 )R)3 }‖e0‖

=
ψ(R)+8(1−L0(

N+1
2 )R)3

8(1−L0(
N+1

2 )R)3 ‖e0‖= ‖e0‖ < R,

(2.2.38)

which implies x1 ∈U(x?,R). Hence, assertion (2.2.14) is true for n = 0.

Let us assume {xn} is well defined and xn ∈ U(x?,R) for all 0 ≤ n ≤ k (k ≥ 1). Using

an analogous way with x0 replaced by xk we deduce:

(i) G(xk) ∈U(x?,R);

(ii) A−1
k ∈ L(Y,X) and

‖A−1
k F ′(x?)‖ ≤ 1

1− L0
2

(N+1)‖ek‖
< 1

1− L0
2

(N+1)R
; (2.2.39)
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(iii) yk is well defined, yk ∈U(x?,R) and

‖uk‖ ≤ ‖A−1
k

F ′(x?)‖L
2
(‖xk −x?‖+‖G(xk)−xk‖)‖ek‖

≤ 1

1− L0
2 (N+1)‖ek‖

L
2
(‖xk −x?‖+‖G(xk)−x?‖+‖x? −xk‖)‖ek‖

≤ L(N+2)‖ek‖2

2(1−L0(
N+1

2
)‖ek‖)

≤ L(N+2)R0‖ek‖
2(1−L0(

N+1
2

)R0)
= ‖ek‖ < R;

(2.2.40)

(iv) zk is well defined, zk ∈ U(x?,R);

(v) xk+1 is well defined and

‖ek+1‖ ≤ hk|1−ac|(N +2)‖ek‖2 +(1−b)a(N +2)h2
k‖ek‖3

+(1−b)ahk‖ek‖2 +ac(ah2
k(N +2)‖ek‖2 +a‖ek‖hk)(N +2)hk‖ek‖2

+ac(N +2)2h2
k‖ek‖3 ≤ ξk‖ek‖2 ≤ ξ‖ek‖2 ≤ ‖ek‖ < R.

(2.2.41)

The induction is completed and by (2.2.41) limk→∞ xk = x?. In the special case of a = b =
c = 1, in view of ξn = λnen and R∗ = R, we can deduce that the error estimates (2.2.20) hold

for any n ≥ 0. That completes the proof of the theorem.

Remark 2.2.4. (a) In view of (2.2.10) condition (2.2.11) always holds. Hence, (2.2.11) is

not an additional to (2.2.10) hypothesis, since in practice the computation of L requires that

of L0.

(b) It follows from (2.2.22) that λ is directly proportional to R? since L0, L and N are

constants. Clearly, the smaller R? is the smaller the ratio of convergence in (2.2.22) will be.

(c) Note that (2.2.10) implies that F is a differentiable operator in Ω [5,17,19].

2.3. Numerical Examples

In this section, we present numerical examples, where we verify the conditions of Theorem

2.2.3

Example 2.3.1. Let X = Y = R, Ω = (−1,1) and define F on Ω by

F(x) = ex −1. (2.3.1)

Then, x? = 0 is a solution of Eq. (2.1.1), and F ′(x?) = 1. Note that for any x,y,u,v ∈ Ω, we
have

|F ′(x?)−1([x,y; F]− [u,v; F])| = | R 1
0 (F ′(tx+(1− t)y)−F ′(tu +(1− t)v))dt|

= | R 1
0

R 1
0 (F ′′(θ(tx+(1− t)y)+(1−θ)(tu +(1− t)v)

)(
tx+(1− t)y− (tu +(1− t)v)

)
dθdt|

= | R 1
0

R 1
0 (eθ(tx+(1−t)y)+(1−θ)(tu+(1−t)v)

(
tx+(1− t)y− (tu +(1− t)v)

)
dθdt|

≤ R 1
0 e|t(x−u)+(1− t)(y− v)|dt

≤ e
2
(|x−u|+ |y− v|)

(2.3.2)

and

|F ′(x?)−1([x,y;F]− [x?,x?;F])|= |R 1
0 F ′(tx+(1− t)y)dt −F ′(x?)|

= |R 1
0 (etx+(1−t)y −1)dt|

= |R 1
0 (tx+(1− t)y)(1+

tx+(1−t)y
2!

+
(tx+(1−t)y)2

3!
+ · · · )dt|

≤ |R 1
0 (tx+(1− t)y)(1+ 1

2!
+ 1

3!
+ · · ·)dt|

≤ e−1
2

(|x−x?|+ |y−x?|).

(2.3.3)
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That is to say, the Lipschitz condition (2.2.10) and the center-Lipschitz condition (2.2.11)

are true for L = e and L0 = e−1, respectively.

Choose G(x) = x−hF(x), where h ∈ (0, 2
e−1

) is a constant. Then, G : Ω ⊆ X → X is

continuous and such that G(x?) = x?. Moreover, for any x ∈ Ω, we have

|G(x)−G(x?)| = |x−h(ex −1)| = |x−h(x+ x2

2!
+ x3

3!
+ · · · )|

= |(1−h)x−h( x2

2!
+ x3

3!
+ · · · )| ≤ (|1−h|+h| 1

2!
+ 1

3!
+ · · · |)|x|

= (|1−h|+h(e−2))|x−x?|,
(2.3.4)

which means condition (2.2.12) is true for N = |1−h|+h(e−2) and N ∈ (0,1).

Table 2.3.1. The comparison results of R0 and R for Example 2.3.1 using various

choices of a,b,c and h

Case h R0(using R0(using R(using R(using

both (2.10) only (2.10)) both (2.10) only (2.10))

and (2.11)) and (2.11))

a = b = c = 1 0.99 0.193161183 0.165629465 0.113779771 0.103632763

1.00 0.193394634 0.165839812 0.113940329 0.103781113

1.01 0.191979459 0.164565090 0.112967093 0.102882059

a = b = 1,c = 0.5 0.99 0.193161183 0.165629465 0.130274315 0.117141837

1.00 0.193394634 0.165839812 0.130452367 0.117305161

1.01 0.191979459 0.164565090 0.129373022 0.116315329

a = b = 0.5,c = 1 0.99 0.193161183 0.165629465 0.128109720 0.115388719

1.00 0.193394634 0.165839812 0.128282409 0.115547600

1.01 0.191979459 0.164565090 0.127235492 0.114584632

Table 2.3.3 gives the comparison results of R0 and R for Example 2.3.1 using various

choices of a,b,c and h, which show that the convergence radius R is always enlarged by

using both condition (2.2.10) and (2.2.11) than the one by using only condition (2.2.10).

The same result is true for R0.

Let us set h = 1 and choose x0 = 0.11. Suppose sequence {xn} is generated by (STTM).

Table 2.3.3 gives the error estimates for Example 2.3.1 using various choices of a,b and c,

which shows that all error estimates given by (2.2.14) (or (2.2.14)) are satisfied. Moreover,

the error estimates of case a = b = c = 1 are smallest among all choices of a,b,c.

Example 2.3.2. Let X = Y = C[0,1], the space of continuous functions defined on [0,1],
equipped with the max norm and Ω = U(0,1). Define function F on Ω, given by

F(x)(s) = x(s)−5

Z 1

0
stx3(t)dt, (2.3.5)

and the divided difference of F is defined by

[x,y;F] =

Z 1

0
F ′(tx+(1− t)y)dt. (2.3.6)
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Table 2.3.2. The comparison results of error estimates for Example 2.3.1 using

various choices of a,b and c

Case n ‖en+1‖ λn‖en‖3(or ξn‖en‖2) λ‖en‖3(or ξ‖en‖2)

a = b = c = 1 0 1.73843e-05 0.040042622 0.040806467

1 1.32733e-15 9.80995e-14 1.61073e-13

a = b = 1,c = 0.5 0 0.000178345 0.039055027 0.053915139

1 7.08930e-13 4.32947e-08 1.41726e-07

a = b = 0.5,c = 1 0 0.001347553 0.043408200 0.057192845

1 2.26682e-07 3.11418e-06 8.58318e-06

Then, we have

[F ′(x)y](s) = y(s)−15

Z 1

0
stx2(t)y(t)dt, f or all y ∈ Ω. (2.3.7)

We have x?(s) = 0 for all s ∈ [0,1], L0 = 7.5 and L = 15 [5].

Choose G(x) = x and a = b = c = 1. Then, N = 1. Using Theorem 2.2.3 and Remark

2.2.4, we deduce that R1 is the unique positive zero of function

φ(r) = 9r3 +12r2 −1, (2.3.8)

which leads to R1 = 0.263762616. Moreover, the radius of convergence of (STTM) is given

by

R? = R =
2R1

L+(N +1)L0R1

= 0.027828287, (2.3.9)

which is bigger than the corresponding radius

R′ =
2R1

L+(N +1)LR1

= 0.023023089 (2.3.10)

obtained by only using the Lipschitz condition (2.2.10).

In the last example we are not interested in checking if the hypotheses of Theorem 2.2.3

are satisfied or not, but comparing the numerical behavior of (STTM) with earlier methods.

Example 2.3.3. In this example we present an application of the previous analysis to the

significant Chandrasekhar integral equation [7]:

x(s) = 1+
s

4
x(s)

Z 1

0

x(t)

s+ t
dt, s ∈ [0,1]. (2.3.11)

Integral equations of the form (2.3.11) are very important and appear in the areas of neutron

transport, radiative transfer and the Kinetic theory of gasses. We refer the interested reader

to [1,11,17] where a detailed description of the physical phenomenon described by (2.3.11)

can be found. We determine where a solution is located, along with its region of uniqueness.

Later, the solution is approximated by an iterative method of (STTM).
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Note that solving ((2.3.11)) is equivalent to solve F(x) = 0, where F : C[0,1]→ C[0,1]

and

[F(x)](s) = x(s)−1− s

4
x(s)

Z 1

0

x(t)

s+ t
dt, s ∈ [0,1]. (2.3.12)

To obtain a numerical solution of (2.3.11), we first discretize the problem and we find it

convenient by testing several number of nodes to approach the integral by a Gauss-Legendre

numerical quadrature with eight nodes (see also [1], [11], [17])

Z 1

0
f (t)dt ≈

8

∑
j=1

w j f (t j),

where

t1 = 0.019855072, t2 = 0.101666761, t3 = 0.237233795, t4 = 0.408282679,

t5 = 0.591717321, t6 = 0.762766205, t7 = 0.898333239, t8 = 0.980144928,
w1 = 0.050614268, w2 = 0.111190517, w3 = 0.156853323, w4 = 0.181341892,

w5 = 0.181341892, w6 = 0.156853323, w7 = 0.111190517, w8 = 0.050614268.

If we denote xi = x(ti), i = 1,2, . . .,8, equation (2.3.11) is transformed into the following

nonlinear system:

xi = 1+
xi

4

8

∑
j=1

ai jx j, i = 1,2, . . .,8,

where, ai j =
tiw j

ti + t j

.

Table 2.3.3. The comparison results of ‖xn+1−xn‖ for Example 2.3.3 using various

methods

n STTM STTM CSTM CSTM

(a = b = c = 1) (a = 0.5,b = 0,c = 2) (a = b = c = 1) (a = 0.5,b = 0,c = 2)

1 2.49e-01 2.45e-01 2.49e-01 2.45e-01

2 5.69e-04 4.85e-03 6.14e-04 4.87e-03

3 3.40e-12 1.33e-06 5.76e-07 6.18e-06

4 4.34e-37 8.02e-14 1.91e-15 3.28e-12

5 6.36e-112 2.46e-28 4.34e-30 1.33e-24

6 1.54e-336 2.04e-57 8.04e-62 1.40e-49

Denote now x = (x1,x2, . . .,x8)
T , 1 = (1,1, . . .,1)T , A = (ai j) and write the last nonlin-

ear system in the matrix form:

x = 1+
1

4
x� (Ax), (2.3.13)

where � represents the inner product. Set G(x) = x. If we choose x0 = (1,1, . . .,1)T and

x−1 = (.99, .99, . . ., .99)T . Assume sequence {xn} is generated by (STTM) (or (CSTM))

with different choices of parameters a, b and c. Table 2.3.3 gives the comparison results for

‖xn+1−xn‖ equipped with the max-norm for this example, which show that (STTM) is faster
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than (CSTM). Here, we perform the computations by Maple 11 in a computer equipped with

Inter(R) Core(TM) i3-2310M CPU.

In future results we shall use higher precision instead of a fixed number of digits in all

computations. We shall also use an adaptive arithmetic in each step of the iterative method.

Note that this higher precision is only necessary in the last step of the iterative process.

Table 2.3.3 shows the usefulness of (STTM) since it is faster than other relevant methods

in the literature like (CSTM).



References

[1] Argyros, I.K., Polynomial operator equations in abstract spaces and applications,

St.Lucie/CRC/Lewis Publ. Mathematics series, 1998, Boca Raton, Florida, U.S.A.

[2] Argyros, I.K., On the Newton–Kantorovich hypothesis for solving equations, J. Com-

put. Appl. Math., 169 (2004), 315–332.

[3] Argyros, I.K., A unifying local–semilocal convergence analysis and applications for

two–point Newton–like methods in Banach space, J. Math. Anal. Appl., 298 (2004),

374–397.

[4] Argyros, I.K., New sufficient convergence conditions for the Secant method, Che-

choslovak Math. J., 55 (2005), 175–187.

[5] Argyros, I.K., Convergence and applications of Newton–type iterations, Springer–

Verlag Publ., New–York, 2008.

[6] Argyros, I.K., Hilout, S., On the weakening of the convergence of Newton’s method

using recurrent functions, J. Complexity, 25 (2009), 530–543.

[7] Argyros, I.K., Hilout, S., On the convergence of two-step Newton-type methods of

high efficiency order, Applicationes Mathematicae, 36(4) (2009), 465-499.

[8] Argyros, I.K., Ezquerro, J., Gutiérrez, J.M., Hernández, M., Hilout, S., On the semilo-

cal convergence of efficient Chebyshev-Secant-type methods, J. Comput. Appl. Math.,

235 (2011), 3195–3206.

[9] Argyros, I.K., Cho, Y.J., Hilout, S., Numerical Methods for Equations and Its Appli-

cations, CRC Press/Taylor and Francis Group, New York, 2012.

[10] Argyros, I. K., George, S. Ball convergence for Steffensen-type fourth-order methods.

Int. J. Interac. Multim. Art. Intell., 3(4) (2015), 37–42.
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Chapter 3

On the Semilocal Convergence of

Halley’s Method under a

Center-Lipschitz Condition on the

Second Fréchet Derivative

3.1. Introduction

Let X and Y be Banach spaces and D be a non-empty, open and convex subset of X . The aim

of this chapter is to show using a numerical example that the convergence theorem of Ref.

[15] is false under the stated hypotheses. Reference [15] was concerned with the semilocal

convergence of Halley’s method for solving a nonlinear operator equation

F(x) = 0, (3.1.1)

where F : D ⊂ X → Y is continuously twice Fréchet differentiable.

Many problems from computational sciences and other disciplines can be brought in

a form similar to equation (3.1.1) using mathematical modelling [1, 2, 3, 4, 7, 8, 10, 12].

The solutions of these equations can be rarely be found in closed form. That is why most

solution methods for these equations are iterative. The study about convergence matter

of iterative procedures is usually based on two types: semilocal and local convergence

analysis. The semilocal convergence matter is, based on the information around an initial

point, to give conditions ensuring the convergence of the iterative procedure; while the

local one is, based on the information around a solution, to find estimates of the radii of

convergence balls.

Halley’s method with initial point x0 ∈ D is defined by [1, 5, 6, 9, 13, 14, 15]

xk+1 = xk − [I −LF (xk)]
−1F ′(xk)

−1F(xk), k = 0,1,2, . . ., (3.1.2)

where, LF(x) = 1
2
F ′(x)−1F ′′(x)F ′(x)−1F(x). Let U(x,R), U(x,R) stand, respectively, for

the open and closed balls in X with center x and radius R > 0. Halley’s method is cubically

convergent and has been studied extensively (see [1-13] and the references therein). In



36 Ioannis K. Argyros and Á. Alberto Magreñán

particular, recurrence relations have been used by Parida [13], Parida and Gupta [14], Chun,

Stǎnicǎ and Neta [9] together with different continuity conditions on the second Fréchet

derivative F ′′ of F such as F ′′ is Lipschitz or Hölder continuous to provider a semilocal

convergence analysis for third order methods such as Halley’s, Chebyshev’s method,

super-Halley’s method and other high order methods. The sufficient conditions usually

associated with the semilocal convergence of Halley’s method are the (C) conditions [1, 5]

given by

(C1) ‖F ′(x0)
−1F(x0)‖ ≤ η,

(C2) ‖F ′(x0)
−1F ′′(x)‖ ≤ β,

(C3) ‖F ′(x0)
−1(F ′′(x)−F ′′(y))‖ ≤ M‖x−y‖,

(C4) h = 3M2

(β2+2M)
3
2 −β(β2+3M)

η ≤ 1,

(C5) U(x0,R0)⊆ D, where R0 is the small positive root of

p(t) =
M

6
t3 +

β

2
t2− t +η.

Similar conditions but with different (C4) and (C5) have been given by us in [5, Theorem

2.3], where the corresponding to R0 radius is given in closed form. There are many inter-

esting examples in the literature (see [3, 4, 11, 15] and Example 3.5.2), where Lipschitz

condition (C3)(used in [9, 13, 14]) is violated but center-Lipschitz condition

‖F ′(x0)
−1[F ′′(x)−F ′′(x0)]‖ ≤ L‖x−x0‖, f or each x ∈ D (3.1.3)

is satisfied. Note that

L ≤ M

holds in general and M
L

can be arbitrarily large [4, 5]. A local convergence analysis for

Halley’s method under (1.3) and more general conditions has been given by us in [5, 6].

Relevant work but for Newton’s method can be found in [3, 4, 11].

The following semilocal convergence theorem was established in [15].

Theorem 3.1.1. Let F : D ⊂ X → Y be continuously twice Fréchet differentiable, D open

and convex. Assume that there exists a starting point x0 ∈ D such that F ′(x0)
−1 exists, and

the following conditions hold:

(i) ‖F ′(x0)
−1F(x0)‖ ≤ η;

(ii) ‖F ′(x0)
−1F ′′(x0)‖ ≤ β;

(iii) (1.3) is true;

(iv) 1
2 βη < τ, where

τ =
3s? +1−

√
7s? +1

9s?−1
= 0.134065 . . ., (3.1.4)

s? = 0.800576 . . . such that q(s?) = 1, and

q(s) =
(6s+2)−2

√
7s+1

(6s−2)+
√

7s+1
(1+

s

1− s2
); (3.1.5)

(v) U(x0,R)⊂ D, where R is the positive solution of

Lt2 +βt −1 = 0. (3.1.6)
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Then, the Halley sequence {xk} generated by (3.1.2) remains in the open ball U(x0,R), and

converges to the unique solution x? ∈U(x0,R) of Eq. (3.1.1) . Moreover, the following error

estimate holds

‖x?−xk‖ ≤
a

c(1−τ)γ

∞

∑
i=k+1

γ2i

, (3.1.7)

where a = βη, c = 1
R

and γ = a(a+4)
(2−3a)2 .

In the present chapter we expand the applicability of Halley’s method using (3.1.3)

instead of (C3). The chapter is organized as follows: In Section 3.2 we present a coun-

terexample to show that the result in [15] using (3.1.3) is false. The mistakes in the proof

are pointed out in Section 3.3. Section 3.4 contains our semilocal convergence analysis of

Halley’s method using (3.1.3). The numerical examples are given in the concluding Section

3.5.

3.2. Motivational example

Example 3.2.1. Let us define a scalar function F(x) = 20x3−54x2 +60x−23 on D = (0,3)
with initial point x0 = 1. Then, we have that

F ′(x) = 12(5x2−9x+5), F ′′(x) = 12(10x−9). (3.2.1)

So, F(x0) = 3, F ′(x0) = 12, F ′′(x0) = 12. We can choose η = 1
4

and β = 1 in Theorem 3.1.1.

Moreover, we have for any x ∈ D that

|F ′(x0)
−1[F ′′(x)−F ′′(x0)]|= 10|x−x0|. (3.2.2)

Hence, the center Lipschitz condition (3.1.3) is true for constant L = 10. We can also verify

condition 1
2 βη = 1

8 < τ = 0.134065 . . . is true. By (3.1.6), we get

R =

√
β2 +4L−β

2L
=

√
41−1

20
= 0.270156 . . .. (3.2.3)

Then, condition U(x0,R) = [x0−R,x0 +R]≈ [0.729844,1.270156]⊂ D is also true. Hence,

all conditions in Theorem 3.1.1 are satisfied. However, we can verify that the point x1

generated by the Halley’s method (3.1.2) doesn’t remain in the open ball U(x0,R). In fact,

we have that

|x1−x0| =
|F ′(x0)

−1F(x0)|
|1− 1

2 F ′(x0)−1F ′′(x0)F ′(x0)−1F(x0)|
=

2

7
= 0.285714 . . .> R. (3.2.4)

Clearly, the rest conclusions of Theorem 3.1.1 cannot be reached.
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3.3. Mistakes in the Proof of Theorem 3.1.1

One crucial mistake exists in the proof of Theorem 3.1.1. To show this, let us introduce

real constants a,b and c, and real sequences {ak},{bk},{ck} and {dk} given in Ref [15] as

follows:

0 < a < 2τ, b > 0, c > 0, 2bc < 2−a, (3.3.1)

a0 = 1, b0 = b, c0 = a
2
, d0 = b

1− a
2
, (3.3.2)

and 



ak+1 = ak

1−cakdk
,

bk+1 = c(1+ ck

2
)d2

k ,

ck+1 = c
2 a2

k+1bk+1,

dk+1 = ak+1bk+1

1−ck+1

(3.3.3)

for all k ≥ 0. In addition, author in [15] sets

rk = d0 +d1 + · · ·+dk =
k

∑
i=0

di (3.3.4)

and

r = lim
k→∞

rk (3.3.5)

provided the limit exists. Using induction, Ref. [15] shows that the following relation holds

for k ≥ 0 if ak ≥ 1:

ak+1 =
1

1−crk

. (3.3.6)

Next Ref. [15] claims that from the initial relations, it follows by induction that, for k =

0,1,2, . . .

cakdk =
ca2

kbk

1−ck

=
2ck

1−ck

. (3.3.7)

Here, we point out that the relation (3.3.7) is not always true. In fact, for k = 0, the first and

second equality of (3.3.7) are obtained from

d0 =
a0b0

1−c0

(3.3.8)

and

c0 =
c

2
a2

0b0, (3.3.9)

respectively. We can easily verify (3.3.8) is really true from (3.3.2). However, (3.3.9) is not

true in general. Otherwise, using (3.3.2) and (3.3.9), we demand that

a = bc. (3.3.10)

Clearly, this condition is introduced improperly and will be violated frequently. Since some

lemmas of Ref. [15] are established on the basis of the above basic relation (3.3.7), they

will be not always true. Therefore, the main theorem of Ref. [15] (Theorem 3.1.1 stated

above) will be not always true, because it is based on these lemmas.
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3.4. New Semilocal Convergence Theorem

In this section, we will give a new semilocal convergence theorem for Halley’s method

under the center Lipschitz condition. We first need some auxiliary lemmas.

Lemma 3.4.1. Function q(s) given by

q(s) = 2s
1−s

(1+
s(s+2)

(1−3s)2

1−(
s(s+2)

(1−3s)2 )2
) (3.4.1)

increases monotonically on [0, 2−
√

2
4

) and there exists a unique point τ ≈ 0.134065 ∈
(0, 2−

√
2

4
) such that q(τ) = 1.

Proof. It is easy to verify function h(s) given by

h(s) = s(s+2)
(1−3s)2 . (3.4.2)

increases monotonically on [0, 1
3 ), and such that h( 2−

√
2

4 ) = 1 and h(s) < 1 is true on

[0, 2−
√

2
4 ). By (4.1), q(s) increases monotonically on [0, 2−

√
2

4 ). Since q(0) = 0 and q(s)

tends to +∞ as s tends to 2−
√

2
4

from the left side. Therefore, there exists a unique point

τ ∈ (0, 2−
√

2
4 ) such that q(τ) = 1. We can use iterative methods such as the Secant method

to obtain: τ ≈ 0.134065. The proof is complete. �

Lemma 3.4.2. Let real constants a,b and c be defined by

a > 0, b > 0, c > 0, 2bc < 2−a, (3.4.3)

and real sequences {ak},{bk},{ck} and {dk} be defined by (3.3.2)-(3.3.3). Assume that

c1 =
c2b2(a+4)

2(2−a−2bc)2
< τ, (3.4.4)

where τ is a constant defined in Lemma 3.4.1. Then, sequence {ck} is a bounded strictly

decreasing and ck ∈ (0,τ) for all k ≥ 1. Moreover, we have that

ck+1 =
c2

k

(1−3ck)2
(ck +2), k = 1,2, . . .. (3.4.5)

Proof. By conditions (3.4.3) and (3.4.4), a1,b1,c1 and d1 are well defined. Since,

ca1d1 =
ca2

1b1

1−c1

=
2c1

1−c1

< 1, (3.4.6)

a2,b2 and c2 are well defined. We have that

c2 =
c

2

a2
1

(1− 2c1

1−c1
)2

c(1+
c1

2
)

a2
1b2

1

(1−c1)2
=

c2
1

(1−3c1)2
(c1 +2). (3.4.7)
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Hence, (3.4.5) holds for k = 1. By (3.4.7), c2 < c1 < 1 is true, since

(1−3c1)
2 −c1(c1 +2) = 8c2

1 −8c1 +1 > 0, (3.4.8)

which is equivalent to

c1 <
2−

√
2

4
. (3.4.9)

Then, d2 is well defined.

Suppose sequences {ak},{bk},{ck} and {dk} are well defined for k = 0,1, . . .,n + 1,

cn+1 < cn < · · · < c2 < c1, and (3.4.5) holds for k = 1,2, . . .,n, where n ≥ 1 is a fixed

integer. Since,

can+1dn+1 =
ca2

n+1bn+1

1−cn+1

=
2cn+1

1−cn+1

< 1, (3.4.10)

it follows that an+2,bn+2 and cn+2 are well defined. We have that

cn+2 =
c

2

a2
n+1

(1− 2cn+1

1−cn+1
)2

c(1+
cn+1

2
)

a2
n+1b2

n+1

(1−cn+1)2
=

c2
n+1

(1−3cn+1)2
(cn+1 +2), (3.4.11)

thus (4.5) holds for k = n+1. So, cn+2 < cn+1 < · · ·< c2 < c1 < 1, and dn+2 is well defined.

That completes the induction and the proof of the lemma. �

Lemma 3.4.3. Under the assumptions of Lemma 3.4.2, if we set γ = c2

c1
, then for k ≥ 0

(i) ck+1 ≤ c1γ2k−1;

(ii) dk+1 ≤ 2c1

ca1(1−c1)
γ2k−1;

(iii) r− rk ≤ ∑∞
i=k+1

2c1

ca1(1−c1)
γ2i−1−1;

where r is defined in (3.3.5).

Proof. Obviously, (i) is true for k = 0. By Lemma 3.4.2, for any k ≥ 1, we have that

ck+1 =
c2

k

(1−3ck)2
(ck +2) ≤ c2

k

(1−3ck−1)2
(ck−1 +2) ≤ ·· · ≤ c2

k

(1−3c1)2
(c1 +2) = λc2

k ,

(3.4.12)

where

λ =
c1 +2

(1−3c1)2
=

c2
1(c1 +2)

(1−3c1)2c2
1

=
c2

c2
1

=
γ

c1

. (3.4.13)

Multiplying both side of (3.4.12) by λ yields

λck+1 ≤ (λck)
2 ≤ (λck−1)

22 ≤ ·· · ≤ (λc1)
2k

= γ2k

, (3.4.14)

which shows (i). Consequently, for k ≥ 1, we have

dk+1 =
cak+1dk+1

cak+1

=
ca2

k+1bk+1

cak+1(1−ck+1)
=

2ck+1

cak+1(1−ck+1)
≤ 2c1γ2k−1

ca1(1−c1)
. (3.4.15)

That is, (ii) is true for k ≥ 1. For the case of k = 0, we have that

d1 =
a1b1

1−c1

=
ca2

1b1

ca1(1−c1)
=

2c1

ca1(1−c1)
, (3.4.16)

which means (ii) is also true for k = 0. Moreover, (iii) is true by using (ii) and the definitions

of rk and r. The proof is complete. �
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Lemma 3.4.4. Under the assumptions of Lemma 3.4.2, if we set a = βη, b = η, c = 1
R

, then

r = limk→∞ rk < R.

Proof. By the definition of rk, Lemmas 3.4.1-3.4.3, for any k ≥ 1, we have that

rk ≤ d0 +∑k
i=1

2c1

ca1(1−c1)
γ2i−1−1 < d0 + 2Rc1

a1(1−c1)
(1+ γ

1−γ2 )

= d0 + 2(1−cd0)Rc1

1−c1
(1+

c1(c1+2)

(1−3c1)2

1−(
c1(c1+2)

(1−3c1)2 )2
) = d0 +q(c1)(R−d0)

< d0 +q(τ)(R−d0) = R.

(3.4.17)

Here, we used R = 1
c

> b
1− a

2
= d0 by (3.4.3). Hence, r = limk→∞ rk exists and r < R. The

proof is complete. �

Lemma 3.4.5. Set a = βη, b = η and c = 1
R

. Let {ak},{bk},{ck},{dk} be the sequences

generated by (3.3.2)-(3.3.3). Suppose that conditions (3.4.3) and (3.4.4) are true. Then for

any k ≥ 0, we have

(i) F ′(xk)
−1 exists and ‖F ′(xk)

−1F ′(x0)‖ ≤ ak;

(ii) ‖F ′(x0)
−1F(xk)‖ ≤ bk;

(iii) [I−LF (xk)]
−1 exists and ‖LF(xk)‖ ≤ ck;

(iv) ‖xk+1−xk‖ ≤ dk;

(v) ‖xk+1−x0‖ ≤ rk < R.

Proof. The proof is similar to the one in [15], and we shall omit it. �

Now, we can state our main theorem.

Theorem 3.4.6. Let F : D ⊂ X → Y be continuously twice Fréchet differentiable, D open

and convex. Assume that there exists a starting point x0 ∈ D such that F ′(x0)
−1 exists, and

the following conditions hold:

(i) ‖F ′(x0)
−1F(x0)‖ ≤ η;

(ii) ‖F ′(x0)
−1F ′′(x0)‖ ≤ β;

(iii) the center Lipschitz-condition (3.1.3) is true;

(iv) conditions (3.4.3) and (3.4.4) are true;

(v) U(x0,R)⊂ D, where R is the positive solution of (3.1.6).

Then, the Halley sequence {xk} generated by (3.1.2) remains in the open ball U(x0,R), and

converges to the unique solution x? ∈U(x0,R) of Eq. (3.1.1) . Moreover, the following error

estimate holds for any k ≥ 1

‖x?−xk‖ ≤
∞

∑
i=k

2c1

ca1(1−c1)
γ2i−1−1, (3.4.18)

where a = βη,b = η,c = 1
R

and γ = c2

c1
=

c1(c1+2)
(1−3c1)2 .

Proof. Using Lemma 3.4.5, we have for all k ≥ 0, xk ∈ U(x0,R). From Lemma 3.4.5 and

Lemma 3.4.3, we get for any integer k,m ≥ 1

‖xk+m −xk‖ ≤ ∑k+m−1
i=k ‖xi+1 −xi‖ ≤ ∑k+m−1

i=k di ≤ ∑k+m−1
i=k

2c1

ca1(1−c1)
γ2i−1−1

≤ 2c1

ca1(1−c1)
∑∞

i=k γ2i−1−1 ≤ 2c1

ca1(1−c1)γ
γ2k−1

1−γ2 .
(3.4.19)
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That is, {xk} is a Cauchy sequence. So, there exists a point x? ∈ U(x0,R) such that {xk}
converges to x? as k → ∞. Using Lemma 3.4.3, clearly we have dk → 0 as k → ∞. Using

Lemma 3.4.5 and Lemma 3.4.2, for any k ≥ 0, we have

‖F ′(x0)
−1F(xk+1)‖ ≤ bk+1 = c(1+ ck

2
)d2

k ≤ c(1+ c1

2
)d2

k → 0 as k → ∞. (3.4.20)

The continuity of F gives

‖F ′(x0)
−1F(x?)‖= limk→∞‖F ′(x0)

−1F(xk+1)‖= 0 as k → ∞, (3.4.21)

that is F(x?) = 0. By let m → ∞ in (3.4.19), (3.4.18) is obtained immediately.

Finally, we can show the uniqueness of x? ∈ U(x0,R) by using the same technique as

in [2, 3, 4, 5, 15]. The proof is complete. �

Remark 3.4.7. (a) Let us compare our sufficient convergence condition (3.4.3) with condi-

tion (C4). Condition (3.4.3) can be rewritten as

h0 =
2β+

√
β2+4L

2 η < 1 (3.4.22)

if we use the choices of a,b,c given in Lemma 3.4.5 and R given by (3.2.3). Then, we have

that

h0 ≤ h. (3.4.23)

Estimate (3.4.23) shows that one of our convergence conditions is at least as weak as (C4).

However a direct comparison between (3.4.4) and (C4) is not practical. A similar favorable

comparison can be followed with all other sufficient convergence conditions of the form

(C4) already in the literature using M instead of L (see [4, 5, 10, 11, 13, 14, 15]) and the

references therein).

(b) It is possible that (C3) is satisfied (hence, (3.1.3) too) but not (C4) (or (C5)). In this

case we test to see if our conditions are satisfied. If our conditions are satisfied although

we predict only quadratic convergence of the Halley method (3.1.2) (see e.g. Lemma 3.4.3)

after a certain iterate xN , where N is a finite natural integer (C4) and (C5) will be satisfied

for x0 = xN . Therefore, the usual error estimates for the cubical convergence of the Halley

method (3.1.2) will hold. We refer the reader to [3, 4], where we show how to choose N

in the case of Newton’s method. The N for Halley’s method (3.1.2) can be found in an

analogous way.

3.5. Numerical Examples

In this section, we will give some examples to show the application of our Theorem 3.4.6.

Example 3.5.1. Let us define a scalar function F(x) = x3 − 2.25x2 + 3x− 1.585 on D =
(0,3) with initial point x0 = 1. Then, we have that

F ′(x) = 3x2 −4.5x+3, F ′′(x) = 6x−4.5. (3.5.1)

So, F(x0) = 0.165, F ′(x0) = 1.5, F ′′(x0) = 1.5. We can choose η = 0.11 and β = 1 in

Theorem 3.4.6. Moreover, we have for any x ∈ D that

|F ′(x0)
−1[F ′′(x)−F ′′(x0)]|= 4|x−x0|. (3.5.2)
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Hence, the weak Lipschitz condition (3.1.3) is true for constant L = 4. By (3.1.6), we get

R =

√
β2 +4L−β

2L
=

√
17−1

8
= 0.390388 . . .. (3.5.3)

Then, condition U(x0,R) = [x0 − R,x0 + R] ≈ [0.609612,1.390388]⊂ D is true. We can

also verify conditions 2−a−2bc = 2−βη−2η/R ≈ 1.326458 > 0 and c1 = c2b2(a+4)
2(2−a−2bc)2 ≈

0.092729212 < τ = 0.134065 . . . is true. Hence, all conditions in Theorem 3.4.6 are satis-

fied.

Example 3.5.2. In this example we provide an application of our results to a special non-

linear Hammerstein integral equation of the second kind. Consider the integral equation

u(s) = f (s)+λ

Z b′

a′
k(s, t)u(t)2+ 1

n dt, λ ∈ R,n ∈ N, (3.5.4)

where f is a given continuous function satisfying f (s) > 0 for s ∈ [a′,b′] and the kernel is

continuous and positive in [a′,b′]× [a′,b′].
Let X = Y = C[a′,b′] and D = {u ∈ C[a′,b′] : u(s)≥ 0, s ∈ [a′,b′]}. Define F : D → Y

by

F(u)(s) = u(s)− f (s)−λ
Z b′

a′
k(s, t)u(t)2+ 1

n dt, s ∈ [a′,b′]. (3.5.5)

We use the max-norm, The first and second derivatives of F are given by

F ′(u)v(s) = v(s)−λ(2+
1

n
)

Z b′

a′
k(s, t)u(t)1+ 1

n v(t)dt, v ∈ D, s ∈ [a′,b′], (3.5.6)

and

F ′′(u)(vw)(s) = −λ(1+
1

n
)(2+

1

n
)

Z b′

a′
k(s, t)u(t)

1
n (vw)(t)dt, v,w ∈ D, s ∈ [a′,b′],

(3.5.7)

respectively.

Let x0(t) = f (t), α = mins∈[a′,b′] f (s), δ = maxs∈[a′,b′] f (s) and M =

maxs∈[a′,b′]
R b′

a′ |k(s, t)|dt. Then, for any v,w ∈ D,

‖[F ′′(x)−F ′′(x0)](vw)‖ ≤ |λ|(1+ 1
n
)(2+ 1

n
)maxs∈[a′,b′]

R b′
a′ |k(s, t)||x(t) 1

n − f (t)
1
n |dt‖vw‖

= |λ|(1+ 1
n
)(2+ 1

n
)maxs∈[a′,b′]

R b′
a′ |k(s, t)| |x(t)− f (t)|

x(t)
n−1

n +x(t)
n−2

n f (t)
1
n +···+ f (t)

n−1
n

dt‖vw‖

≤ |λ|(1+ 1
n
)(2+ 1

n
)maxs∈[a′,b′]

R b′
a′ |k(s, t)| |x(t)− f (t)|

f (t)
n−1

n
dt‖vw‖

≤ |λ|(1+ 1
n
)(2+ 1

n
)

α
n−1

n
maxs∈[a′,b′]

R b′
a′ |k(s, t)||x(t)− f (t)|dt‖vw‖

≤ |λ|(1+ 1
n )(2+ 1

n )M

α
n−1

n
‖x−x0‖‖vw‖,

(3.5.8)

which means

‖F ′′(x)−F ′′(x0)‖ ≤ |λ|(1+ 1
n )(2+ 1

n )M

α
n−1

n
‖x−x0‖. (3.5.9)
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Next, we give a bound for ‖F ′(x0)
−1‖. Using (3.5.6), we have that

‖I −F ′(x0)‖ ≤ |λ|(2+
1

n
)δ1+ 1

n M. (3.5.10)

It follows from the Banach theorem that F ′(x0)
−1 exists if |λ|(2+ 1

n
)δ1+ 1

n M < 1, and

‖F ′(x0)
−1‖ ≤ 1

1−|λ|(2+ 1
n
)δ1+ 1

n M
. (3.5.11)

On the other hand, we have from (3.5.5) and (3.5.7) that ‖F(x0)‖ ≤ |λ|δ2+ 1
n M and

‖F ′′(x0)‖ ≤ |λ|(1 + 1
n
)(2 + 1

n
)δ

1
n M. Hence, if |λ|(2 + 1

n
)δ1+ 1

n M < 1, the weak Lipschitz

condition (1.3) is true for

L =
|λ|(1+ 1

n
)(2+ 1

n
)M

α
n−1

n [1−|λ|(2+ 1
n
)δ1+ 1

n M]
(3.5.12)

and constants η and β in Theorem 3.4.6 can be given by

η =
|λ|δ2+ 1

n M

1−|λ|(2+ 1
n
)δ1+ 1

n M
, β =

|λ|(1+ 1
n
)(2+ 1

n
)δ

1
n M

1−|λ|(2+ 1
n
)δ1+ 1

n M
. (3.5.13)

Next we let [a′,b′] = [0,1], n = 2, f (s) = 1, λ = 1.1 and k(s, t) is the Green’s kernel on

[0,1]× [0,1] defined by

G(s, t) =

{
t(1− s), t ≤ s;

s(1− t), s ≤ t.
(3.5.14)

Consider the following particular case of (3.5.4):

u(s) = f (s)+1.1

Z 1

0
G(s, t)u(t)

5
2 dt, s ∈ [0,1]. (3.5.15)

Then, α = δ = 1 and M = 1
8
. Moreover, we have that

η =
22

105
, β =

11

14
, L =

11

14
. (3.5.16)

Therefore 2−a−2bc ≈ 1.264456 > 0, τ− c1 ≈ 0.027938 > 0 and R ≈ 0.733988. Hence,

U(x0,R) ⊂ D. Thus, all conditions of Theorem 3.4.6 are satisfied. Consequently, sequence

{xk} generated by Halley’s method (3.1.2) with initial point x0 converges to the unique

solution x? of Eq. (3.5.15) on U(x0,0.733988). The Lipschitz condition (C3) is not satisfied

[3, 4, 11, 15]. Hence, we have expanded the applicability of Halley’s method. Note also

that verifying (3.1.3) is less expensive than verifying (C3).
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[14] Parida, P.K., Gupta, P.K., Semilocal convergence of a family of third-order

Chebyshev-type methods under a mild differentiability condition. Int. J. Comput.

Math. 87 (2010), 3405–3419.

[15] Xu, X.B., Ling, Y.H., Semilocal convergence for Halley’s method under weak Lips-

chitz condition, App. Math. Comp. 215 (2009), 3057–3067.



Chapter 4

An Improved Convergence Analysis

of Newton’s Method for Twice

Fréchet Differentiable Operators

4.1. Introduction

In this chapter, we are concerned with the problem of approximating a locally unique solu-

tion x? of equation

F (x) = 0, (4.1.1)

where, F is a twice Fréchet differentiable operator defined on a convex subset D of a

Banach space X with values in a Banach space Y . Numerous problems in science and

engineering – such as optimization of chemical processes or multiphase, multicomponent

flow – can be reduced to solving the above equation [7, 8, 9, 14, 15, 16]. Consequently,

solving these equations is an important scientific field of research. For most problems,

finding a closed form solution for the non-linear equation (4.1.1) is not possible. Therefore,

iterative solution techniques are employed for solving these equations. The study about

convergence analysis of iterative methods is usually divided into two categories: semilocal

and local convergence analysis. The semilocal convergence analysis is based upon the

information around an initial point to give criteria ensuring the convergence of the iterative

procedure. While the local convergence analysis is based on the information around a

solution to find estimates of the radii of convergence balls.

The most popular iterative method for solving problem (4.1.1) is the Newton’s method

xn+1 = xn −F ′(xn)
−1F (xn) for each n = 0,1,2, . . ., (4.1.2)

where x0 ∈ D is an initial point. There exists extensive local as well as semilocal conver-

gence analysis results under various Lipschitz type conditions for Newton’s method (4.1.2)

[1–17]. The following four conditions have been used to perform semilocal convergence

analysis of Newton’s method (4.1.2) [3, 5, 7, 8, 9, 13, 14]

C1. there exists x0 ∈ D such that F ′(x0)
−1 ∈ L(Y ,X ),

C2.
∥∥F ′(x0)

−1F (x0)
∥∥≤ η,
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C3.
∥∥F ′(x0)

−1F ′′(x)
∥∥≤ K for each x ∈ D,

C4.
∥∥F ′(x0)

−1(F ′′(x)−F ′′(y))
∥∥≤ M ‖x−y‖ for each x,y ∈ D.

Let us also introduce the center-Lipschitz condition

C5.
∥∥F ′(x0)

−1(F ′(x)−F ′(x0))
∥∥≤ L0‖x−x0‖ for each x ∈ D.

We shall refer to (C1) – (C5) as the (C) conditions. The following conditions have also

been employed [9, 10, 11, 12, 17, 14]

C6. ‖F ′(x0)
−1F ′′(x0)‖ ≤ K0

C7.
∥∥F ′(x0)

−1(F ′′(x)−F ′′(x0))
∥∥≤ M0 ‖x−x0‖ for each x ∈ D.

Here onwards, the conditions (C1), (C2), (C5), (C6), (C7) are referred as the (H) conditions.

For the semilocal convergence of Newton’s method the conditions (C1), (C2), (C3)

together with the following sufficient conditions are given [1, 2, 3, 4, 9, 10, 11, 12, 17, 14,

15, 16, 18]

η ≤ 4M +K 2 −K
√

K 2 +2M

3M (K +
√

K 2 +2M )
, (4.1.3)

U(x0,R1)⊆ D (4.1.4)

where R1 is the smallest positive root of

P1(t) =
M

6
t3 +

K

2
t2 − t +η. (4.1.5)

Whereas the conditions (C1), (C2), (C6), (C7) together with

η ≤
4M0 +K 2

0 −K0

√
K 2

0 +2M0

3M0(K0 +
√

K 2
0 +2M0)

(4.1.6)

U(x0,R2)⊆ D (4.1.7)

where R2 is the small positive root of

P2(t) =
M0

6
t3 +

K0

2
t2 − t +η. (4.1.8)

have also been used for the semilocal convergence of Newton’s method. Conditions (4.1.3)

and (4.1.6) cannot be directly be compared with ours given in Sections 4.2 and 4.3, since

we use L0 that does not appear in (4.1.3) and (4.1.6). However, comparisons can be made

on concrete numerical examples. Let us consider X = Y = R, x0 = 1 and D = [ζ,2−ζ] for

ζ ∈ (0,1). Define function F on D by

F (x) = x5 −ζ. (4.1.9)
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Figure 4.1.1. Convergence criteria (4.1.3) and (4.1.6) for the equation (4.1.9). Here, h1 and

h2 stands respectively for the right hand side of the conditions (4.1.3) and (4.1.6).

Then, through some simple calculations, the conditions (C2), (C3), (C4), (C5), (C6) and

(C7) yield

η =
(1−ζ)

5
, K = 4(2−ζ)3, M = 12(2−ζ)2, K0 = 4,

M0 = 4ζ2 −20ζ+28, L0 = 15−17ζ+7ζ2 −ζ3.





Figure 4.1.1 plots the criteria (4.1.3) and (4.1.6) for the problem (4.1.9). In the Figure 4.1.1,

h1 stands for the right hand side of the condition (4.1.3) and h2 stands for the the right hand

side of the condition (4.1.6). In the Figure 4.1.1, we observe that for ζ < 0.723 the criterion

(4.1.3) does not hold while for ζ < 0.514 the criterion (4.1.6) does not hold. However, one

may see that the method (4.1.2) is convergent.

In this chapter, we expand the applicability of Newton’s method (4.1.2) first under the

(C) conditions and secondly under the (H) conditions. The local convergence of Newton’s

method (4.1.2) is also performed under similar conditions.

The chapter is organized as follows. In the Section 4.2 and Section 4.3, we study ma-

jorizing sequences for the Newton’s iterate {xn}. Section 4.4 contains the semilocal con-

vergence of Newton’s method. The local convergence is given in Section 4.5. Finally,

numerical examples are given in Section 4.6.



50 Ioannis K. Argyros and Á. Alberto Magreñán

4.2. Majorizing Sequences I

In this section, we present scalar sequences and prove that these sequences are majorizing

for Newton’s method (4.1.2). We need the following convergence results for majorizing

sequences under the (C) conditions.

Lemma 4.2.1. Let K , L0, M > 0 and η > 0. Define parameters α,η0 and η1 by

α =
2K

K +
√

K 2 +8L0K
, (4.2.1)

η0 =
2

K

2
+(1+α)L0 +

√(K

2
+(1+α)L0

)2

+
2M α

3

(4.2.2)

and

η1 =
2α

K

2
+αL0 +

√(K

2
+αL0

)2

+
2M α

3

. (4.2.3)

Suppose that

η ≤





η1 if L0η ≤ 1−α2

2+2α−α2

η0 if
1−α2

2+2α−α2
≤ L0η.

(4.2.4)

Then, sequence {tn} generated by

t0 = 0, t1 = η, tn+2 = tn+1 +
K +

M

3
(tn+1− tn)

2(1−L0tn+1)
(tn+1− tn)

2 (4.2.5)

is well defined, increasing, bounded from above

t?? =
η

1−α
(4.2.6)

and converges to its unique least upper bound t? which satisfies t? ∈ [η, t??]. Moreover the

following estimates hold

tn+1− tn ≤ αnη (4.2.7)

and

t?− tn ≤
αnη

1−α
. (4.2.8)

Proof. We use mathematical induction to prove (4.2.7). Set

αk =
K +

M

3
(tk+1− tk)

2(1−L0tk+1)
. (4.2.9)
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According to (4.2.5) and (4.2.9), we must prove that

αk ≤ α. (4.2.10)

Estimate (4.2.10) holds for k = 0 by (4.2.4) and the choice of η1 given in (4.2.3). Then, we

also have

t2− t1 ≤ α(t1 − t0)

and

t2 ≤ t1 +α(t1− t0) = η+αη = (1+α)η =
1−α2

1−α
η <

η

1−α
= t??.

Let us assume that (4.2.9) holds for all k ≤ n. Then, we also have by (4.2.5) that

tk+1− tk ≤ αkη

and

tk+1 ≤
1−αk+1

1−α
η < t??.

Then, we must prove that

(K

2
+

M

6
αkη

)
αkη+αL0

1−αk+1

1−α
η−α ≤ 0. (4.2.11)

Estimate (4.2.11) motivates us to define recurrent functions fk on [0,1) for each k = 1,2, . . .

by

fk(t) =
1

2

(
K +

M

3
tkη
)

tk−1η+L0(1+ t + · · ·+ tk)η−1. (4.2.12)

We need a relationship between two consecutive functions fk. Using (4.2.12) we get that

fk+1(t) = fk(t)+gk(t), (4.2.13)

where

gk(t) =
[1

2

(
K +

M

3
tk+1η

)
t − 1

2

(
K +

M

3
tkη
)

+L0t2
]
tk−1η

=
[1

2
(2L0t2 +K t −K )+

M

6
tkη(t2−1)

]
tk−1η. (4.2.14)

In particular, we get that

gk(α) ≤ 0, (4.2.15)

since α ∈ (0,1) and

2L0α2 +Lα−K = 0 (4.2.16)
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by the choice of α. Evidently (4.2.11) holds if

fk(α)≤ 0 for each k = 1,2, . . .. (4.2.17)

But in view of (4.2.13), (4.2.14) and (4.2.15) we have that

fk(α) ≤ fk−1(α) ≤ ·· · ≤ f1(α). (4.2.18)

Hence, (4.2.17) holds if

f1(α) ≤ 0 (4.2.19)

which is true by the choice of η0. The induction for (4.2.7) is complete. Hence, sequence

{tn} is increasing, bounded from above by t?? and as such it converges to t?. Estimates

(4.2.8) follows from (4.2.7) and by standard majorization techniques [7, 8, 14, 15, 16, 18].

Let us denote by γ0 and γ1, respectively, the minimal positive zeros of the following

equations with respect to η

[K

2
+

M

6
α(t2 − t1)

]
(t2 − t1)+L0(1+α)(t2− t1)+L0t1−1 = 0 (4.2.20)

and

[K

2
+

M

6
(t2− t1)

]
(t2− t1)+αL0t2 −α = 0. (4.2.21)

Let us set

γ = min{γ0,γ1,1/L0}. (4.2.22)

Then, we can show the following result.

Lemma 4.2.2. Suppose that

η





≤ γ if γ 6= 1

L0

< γ if γ =
1

L0

(4.2.23)

Then, sequence {tn} generated by (4.2.5) is well defined, increasing, bounded from above

by

t??
1 = t1 +

t2− t1

1−α
(4.2.24)

and converges to its unique least upper bound t?1 ∈ [0, t??
1 ]. Moreover, the following esti-

mates hold for each n = 1,2, . . .

tn+2− tn+1 ≤ αn(t2− t1). (4.2.25)
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Proof. As in Lemma 4.2.1 we shall prove (4.2.25) using mathematical induction. We have

by the choice of γ1 that

α1 =
K +

M

3
(t2− t1)

2(1−L0t2)
(t2− t1) ≤ α. (4.2.26)

Then, it follows from (4.2.26) and (4.2.20) that

0 < t3 − t2 ≤ α(t2− t1)

t3 ≤ t2 +α(t2 − t1)

t3 ≤ t2 +(1+α)(t2− t1)− (t2− t1)

t3 ≤ t1 +
1−α2

1−α
(t2− t1) < t??.

Assume that

0 < αk ≤ α (4.2.27)

holds for all n ≤ k. Then, we get by (4.2.5) and (4.2.27) that

0 < tk+2− tk+1 ≤ αk(t2 − t1) (4.2.28)

and

tk+2 ≤ t1 +
1−αk+1

1−α
(t2− t1) < t??

1 . (4.2.29)

Estimate (4.2.27) is true, if k is replaced by k +1 provided that

[K

2
+

M

6
(tk+2− tk+1)

]
(tk+2− tk+1) ≤ α(1−L0tk+2)

or

[K

2
+

M

6
αk(t2− t1)

]
αk(t2− t1)+αL0

[
t1 +

1−αk+1

1−α
(t2− t1)

]
−α ≤ 0. (4.2.30)

Estimate (4.2.30) motivates us to define recurrent functions fk on [0,1) by

fk(t) =
[K

2
+

M

6
tk(t2− t1)

]
tk(t2− t1)+ tL0(1+ t + · · ·+ tk)(t2− t1)

− t(1−L0t1). (4.2.31)

We have that

fk+1(t) = fk(t)+
[1

2
(2L0t

2 +K t−K )+
M

6
tk(t2−1)(t2− t1)

]
tk(t2− t1). (4.2.32)

In particular, we have the choice of α that

fk+1(α) ≤ fk(α) ≤ ·· · ≤ f1(α) ≤ 0. (4.2.33)
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Evidently, estimate (4.2.30) holds if

fk(α) ≤ 0 or by (4.2.33) if

f1(α) ≤ 0
(4.2.34)

which is true by the choice of η0. The proof of the Lemma is complete.

Lemma’s 4.2.1 and 4.2.2 admit the following useful extensions. The proofs are omitted

since they can simply be obtained by replacing η = t1−t0 with tN+1−tN where N = 1,2, . . .

for Lemma 4.2.3 and N = 2,3, . . . for Lemma 4.2.4.

Lemma 4.2.3. Suppose there exists N = 1,2, . . . such that

t0 < t1 < t2 < · · ·< tN < tN+1 <
1

L0

and

tN+1 − tN ≤





η1 if L0η ≤ 1−α2

2+2α−α2

η0 if
1−α2

2+2α−α2
≤ L0η.

Then, the conclusions of Lemma 4.2.1 for sequence {tn} hold.

Lemma 4.2.4. Suppose there exists N = 2,3, . . . such that

t0 < t1 < t2 < · · ·< tN < tN+1 <
1

L0

and

η





≤ γ if γ 6= 1

L0

< γ if γ =
1

L0

,

where γ is defined by (4.2.22) where t2 − t1, t1, t2 are replaced, respectively, by tN+1 − tN ,

tN , tN+1. Then, the conclusions of Lemma 4.2.1 for sequence {tn} hold.

Remark 4.2.5. Another sequence related to Newton’s method (4.1.2) is given by (see The-

orem 4.4.1)

s0 = 0, s1 = η, s2 = s1 +
K0 +

M1

3
(s1− s0)

2(1−L0s1)
(s1− s0)

2

sn+2 = sn+1 +
K +

M

3
(sn+1− sn)

2(1−L0sn+1)
(sn+1− sn)

2





(4.2.35)
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for each n = 1,2, . . .and some K0 ∈ (0,K ], M1 ∈ (0,M ]. Then, a simple inductive argument

shows that

sn ≤ tn (4.2.36)

sn+1− sn ≤ tn+1− tn (4.2.37)

and

s? = lim
n→∞

sn ≤ t?. (4.2.38)

Moreover, if K0 < K or M1 < M then (4.2.36) and (4.2.37) hold as strict inequalities.

Clearly, sequence {sn} converges under the hypotheses of Lemma 4.2.1 or Lemma 4.2.2.

However, {sn} can converge under weaker hypotheses than those of Lemma 4.2.2. Indeed,

denote by γ1
0 and γ1

1, respectively, the minimal positive zeros of equations

[K

2
+

M

6
α(s2− s1)

]
(s2 − s1)+L0(1+α)(s2− s1)+L0s1 −1 = 0 (4.2.39)

and

[K0

2
+

M1

6
(s2− s1)

]
(s2− s1)+αL0s2 −α = 0. (4.2.40)

Set

γ1 = min{γ1
0,γ1

1,1/L0}. (4.2.41)

Then, we have that

γ ≤ γ1. (4.2.42)

Moreover, the conclusions of Lemma 4.2.2 hold for sequence {sn} if (4.2.42) replaces

(4.2.23).

Note also that strict inequality can hold in (4.2.42) which implies that the sequence {sn}
– which is tighter than {tn} – converges under weaker conditions.

4.3. Majorizing Sequences II

We show convergence of sequences that are majorizing for Newton’s method (4.1.2) under

the (H) conditions.

Lemma 4.3.1. Let K0 > 0, L0 > 0, M0 > 0 and η > 0 with K0 ≤ L0. Define parameters a,

θ0 and η1 by

a =
2K0

K0 +
√

K 2
0 +8K0L0

, (4.3.1)

θ0 =
2

K0

2
+(1+a)L0 +

√(K0

2
+(1+a)L0

)2

+
2M0(a+3)

3

(4.3.2)
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and

θ1 =
2a

K0

2
+aL0 +

√(K0

2
+aL0

)2

+
2M0a

3

. (4.3.3)

Suppose that

η ≤





θ1 if L0η ≤ 1−a2

2+2a−a2

θ0 if
1−a2

2+2a−a2
≤ L0η

(4.3.4)

Then, sequence {vn} generated by

v0 = 0, v1 = η, vn+2 = vn+1 +

M0

6
(vn+1−vn)+

M0

2
vn +

K0

2
1−L0vn+1

(vn+1−vn) (4.3.5)

is well defined, increasing, bounded from above

v?? =
η

1−a
(4.3.6)

and converges to its unique least upper bound v? which satisfies v? ∈ [0,v??]. Moreover the

following estimates hold

vn+1 −vn ≤ anη (4.3.7)

and

v?−vn ≤
anη

1−a
. (4.3.8)

Proof. As in Lemma 4.2.1 we use mathematical induction to prove that

βk =

K0

2
+

M0

2
vk +

M0

6
(vk+1−vk)

1−L0vk+1

(vk+1−vk) ≤ a. (4.3.9)

Estimate (4.3.9) holds for k = 0 by the choice of θ1. Let us assume that (4.3.9) holds for all

k ≤ n. Then, we must prove that

(K0

2
+

M0

2

1−ak

1−a
η+

M0

6
akη
)

akη+aL0

1−ak+1

1−a
η−a ≤ 0. (4.3.10)

Define recurrent functions fk on [0,1) for each k = 1,2, . . . by

fk(t) =
(K0

2
+

M0

2
(1+ t + · · ·++tk−1)η+

M0

6
akη
)

tk−1η

+L0(1+ t + · · ·+ tk)η−1. (4.3.11)
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Using (4.3.11), we get that

fk+1(a) = fk(a)+
[1

2
(2L0a2 +K0a−K0)

+
M0

6
(ak+2 +3ak+1 +2ak −3)η

]
ak−1η ≤ fk(a), (4.3.12)

since a given by (4.3.1) solves the equation 2L0a2 +K0a−K0 = 0 and ak+2+3ak+1+2ak−
3 ≤ 0 for each k = 1,2, . . ., if a ∈ [0,1/2]. Evidently, it follows from (4.3.12) that (4.3.10)

holds which is true by the choice of θ0.

Denote by δ0 and δ1, respectively, the minimal positive zeros of equations

[K0

2
+

M0

2

(
v2 +

M0

6
a(v2 −v1)

)]
(v2−v1)+L0(v1 +(1+a)(v2 −v1))−1 = 0 (4.3.13)

and

[M0

6
(v2 −v1)+

M0

2
v1 +

K0

2

]
(v2 −v1)+aL0v2 −a = 0. (4.3.14)

Set

δ = min{δ0,δ1,1/L0}. (4.3.15)

Then, we can show:

Lemma 4.3.2. Suppose that

η





≤ δ if δ 6= 1

L0

< δ if δ =
1

L0

(4.3.16)

Then, sequence {vn} generated by equation (4.3.5) is well defined, increasing, bounded

from above by

v??
1 = v1 +

v2 −v1

1−a
(4.3.17)

and converges to its unique least-upper bound v?
1 which satisfies v?

1 ∈ [0,v??
1 ]. Moreover, the

following estimates hold for each n = 1,2,3, . . .

vn+2−vn+1 ≤ an(v2 −v1). (4.3.18)

Proof. We have that β1 ≤ a by the choice of δ1. This time we must have

[K0

2
+

M0

2

(
v1 +

1−ak

1−a
(v2 −v1)

)
+

M0

6
ak(v2 −v1)

]
ak(v2−v1)

+aL0

[
v1 +

1−ak+1

1−a
(v2−v1)

]
−a ≤ 0. (4.3.19)
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Define functions fk on [0,1) by

fk(t) =
[K0

2
+

M0

2

(
v1 +

1− tk

1− t
(v2−v1)

)
+

M0

6
ak(t2− t1)

]
tk(v2 −v1)

+ tL0

[
v1 +

1− tk+1

1− t
(v2 −v1)

]
− t. (4.3.20)

We have that

fk+1(a) = fk(a)+
[1

2
(2L0a2 +K0a−K0)+

M0

6
(v2 −v1)

(
3(a−1)a

+(ak+2 +3ak+1 +2ak −3)
)]

ak(v2 −v1).

Thus

fk+1(a)≤ fk(a)≤ ·· · ≤ f1(a). (4.3.21)

But by the choice of η0 we have that f1(a)≤ 0.

Remark 4.3.3. A sequence related to Newton’s method (4.1.2) under the (H) conditions is

defined by

u0 = 0, u1 = η, u2 = u1 +
K0 +

M1

3
(u1−u0)

2(1−L0u1)
(u1−u0)

2

un+2 = un+1 +
K0 +

M0

3
(un+1−un)

2(1−L0un+1)
(un+1−un)

2





(4.3.22)

for each n = 1,2, . . . and M1 ∈ (0,M ]. Then, a simple inductive argument shows that for

each n = 2,3, . . .

un ≤ vn (4.3.23)

un+1−un ≤ vn+1 −vn (4.3.24)

and

u? = lim
n→∞

≤ v?. (4.3.25)

Moreover, if K0 < K or M1 < M0 then (4.3.23) and (4.3.24) hold as strict inequalities.

Sequence {un} converges under the hypotheses of Lemma 4.3.1 or 4.3.2. However, {un}
can converge under weaker hypotheses than those of Lemma 4.3.2. Indeed, denote by δ1

0

and δ1
1, respectively, the minimal positive zeros of equations

[K0

2
+

M0

2

(
u2 +

M0

6
(u2 −u1)

)]
(u2−u1)+L0(u1 +(1+a)(u2 −u1))−1 = 0 (4.3.26)

and

[M0

6
(u2 −u1)+

M0

2
u1 +

K0

2

]
(u2−u1)+aL0u2 −a = 0. (4.3.27)
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Set

δ1 = min{δ1
0,δ1

1,1/L0}. (4.3.28)

Then, we have that

δ ≤ δ1.

Moreover, the conclusions of Lemma 4.3.2 hold for sequence {un} if (4.3.28) replaces

(4.3.16). Note also that strict inequality may hold in (4.3.28) which implies that, tighter

than {vn}, sequence {un} converges under weaker conditions. Finally note that sequence

{tn} is tighter than {vn} although the sufficient convergence conditions for {vn} are weaker

than those of {tn}.

Lemmas similar to Lemma 2.3 and Lemma 2.4 for sequence {vn} can follow in an

analogous way.

4.4. Semilocal Convergence

We present the semilocal convergence of Newton’s method (4.1.2) first under the (C) and

then under the (H) conditions. Let u(x,R) and U(x,R) stand, respectively, for the open and

closed balls in X centered at x ∈ X and of radius R > 0.

Theorem 4.4.1. Let F : D ⊆ X −→ Y be twice Fréchet differentiable. Suppose that the

(C) conditions, hypotheses of Lemma 4.2.1 hold and

U(x0, t
?)⊆ D. (4.4.1)

Then, the sequence {xn} defined by Newton’s method (4.1.2) is well defined, remains in

U(x0, t
?) for all n ≥ 0 and converges to a unique solution x? ∈U(x0, t

?) of equation F (x) =
0. Moreover, the following estimates hold for all n ≥ 0

‖xn+2 −xn+1‖ ≤ tn+2− tn+1 (4.4.2)

and

‖xn −x?‖ ≤ t?− tn, (4.4.3)

where, sequence {tn} (n ≥ 0) is given by (4.2.5). Furthermore, if there exists R ≥ t?, such

that

U(x0,R)⊆ D (4.4.4)

and

L0(t
? +R) ≤ 2. (4.4.5)

The solution x? is unique in U(x0,R).
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Proof. Let us prove that

‖xk+1 −xk‖ ≤ tk+1− tk (4.4.6)

and

U(xk+1, t
?− tk+1) ⊆U(xk, t

?− tk) (4.4.7)

hold for all k ≥ 0. For every z ∈U(x1, t
?− t1)

‖z−x0‖ ≤ ‖z−x1‖+‖x1 −x0‖
≤ (t?− t1)+(t1 − t0) = t?− t0,

implies that z ∈U(x0, t
?− t0). Since, also

‖x1 −x0‖ =
∥∥F ′(x0)

−1F (x0)
∥∥≤ η = t1− t0.

Thus estimate (4.4.6) and (4.4.7) hold for k = 0. Given they hold for n = 0,1,2, . . .,k, then

we have

‖xk+1−x0‖ ≤
k+1

∑
i=1

‖xi −xi−1‖ ≤
k+1

∑
i=1

(ti − ti−1) = tk+1− t0 = tk+1 (4.4.8)

and

‖xk +θ(xk+1−xk)−x0‖ ≤ tk +θ(tk+1− tk) ≤ t?, (4.4.9)

for all θ ∈ [0,1]. Using (4.1.2), we obtain the approximation

F (xk+1) = F (xk+1)−F (xk)−F ′(xk)(xk+1−xk)

=

Z 1

0
[F ′(xk +θ(xk+1−xk))−F ′(xk)](xk+1−xk)dθ (4.4.10)

=

Z 1

0
F ′′(xk +θ(xk+1−xk))(1−θ)(xk+1−xk)

2dθ.

Then, we get by (C3), (C4) and (4.4.1)

∥∥F ′(x0)
−1F (xk+1)

∥∥≤
Z 1

0

(∥∥F ′(x0)
−1[F ′′(xk +θ(xk+1−xk))−F ′′(x?)]

∥∥

+
∥∥F ′(x0)

−1F ′′(x?)
∥∥
)
‖xk+1 −xk‖2 (1−θ)dθ

≤
[
M
(Z 1

0
‖xk+1 −xk‖(1−θ)dθ

)
+

K

2

]
‖xk+1−xk‖2

≤ M

6
‖xk+1−xk‖3 +

K

2
‖xk+1−xk‖2

≤
[
M
(1

6
(tk+1− tk)

)
+

K

2

]
(tk+1− tk)

2 (4.4.11)
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where

K =

{
K0, K = 0,

K , K > 0,
and M =

{
M0, K = 0,

M , K > 0.

Using (C5), we obtain that

∥∥F ′(x0)
−1(F ′(xk+1)−F ′(x0))

∥∥≤ L0 ‖xk+1 −x0‖
≤ L0tk+1 ≤ L0t? < 1. (4.4.12)

It follows from the Banach lemma on invertible operators [7, 8, 14, 15, 16] and (4.4.12) that

F ′(xk+1)
−1 exists and

∥∥F ′(xk+1)
−1F ′(x0)

∥∥≤ (1−L0‖xk+1−x0‖)−1

≤ (1−L0tk+1)
−1. (4.4.13)

Therefore by (4.1.2), (4.4.11) and (4.4.13), we obtain in turn

‖xk+2−xk+1‖ ≤
∥∥F ′(xk+1)

−1F ′(xk+1)
∥∥

≤
∥∥F ′(xk+1)

−1F ′(x0)
∥∥∥∥F ′(x0)

−1F (xk+1)
∥∥ (4.4.14)

≤ tk+2− tk+1.

Thus for every z ∈U(xk+2, t
?− tk+2), we have

‖z−xk+1‖ ≤ ‖z−xk+2‖+‖xk+2 −xk+1‖
≤ t?− tk+2 + tk+2 − tk+1 = t?− tk+1. (4.4.15)

That is,

z ∈ U(xk+1, t
?− tk+1). (4.4.16)

Estimates (4.4.13) and (4.4.16) imply that (4.4.6) and (4.4.7) hold for n = k +1. The proof

of (4.4.6) and (4.4.7) is now complete by induction.

Lemma 4.2.1 implies that sequence {tn} is a Cauchy sequence. From (4.4.6) and (4.4.7),

{xn} (n≥ 0) becomes a Cauchy sequence too and as such it converges to some x? ∈U(x0, t
?)

(since U(x0, t
?) is a closed set). Estimate (4.4.3) follows from (4.4.2) by using standard

majorization techniques [7, 8, 14, 15, 16, 18]. Moreover, by letting k → ∞ in (4.4.11), we

obtain F (x?) = 0. Finally, to show uniqueness let y? be a solution of equation F (x) = 0 in

U(x0,R). It follows from (C5) for x = y? +θ(x?−y?), θ ∈ [0,1], the estimate

∥∥∥∥F ′(x0)
−1

Z 1

0
(F ′(y? +θ(x?−y?))−F ′(x0))

∥∥∥∥dθ

≤ L0

Z 1

0
‖y? +θ(x?−y?)−x0‖dθ

≤ L0

Z 1

0
(θ‖x? −x0‖+(1−θ)‖y?−x0‖)dθ

≤ L0

2
(t? +R) ≤ 1, (by (4.6.2))
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and the Banach lemma on invertible operators implies that the linear operator T ?? =
R 1

0 F ′(y? + θ(x?− y?))dθ is invertible. Using the identity 0 = F (x?)−F ′(y?) = T ??(x? −
y?), we deduce that x? = y?.

Similarly, we show the uniqueness in U(x0, t
?) by setting t? = R. That completes the

proof of Theorem 4.4.1.

Remark 4.4.2. The conclusions of Theorem 4.4.1 hold if {tn}, t? are replaced by {rn}, r?,

respectively.

Using the approximation

F ′(x0)
−1F (xk+1) =

Z 1

0
F ′(x0)

−1[F ′′(xk +θ(xk+1−xk))−F ′′(x0)](xk+1−xk)
2(1−θ)dθ

+
Z 1

0
F ′(x0)

−1F ′′(x0)(1−θ)dθ ‖xk+1−xk‖2
(4.4.17)

instead of (4.4.11) and (C6), (C7) instead of, respectively, (C3), (C4), we arrive at the

following semilocal convergence result under the (H) conditions [8, Theorem 6.3.7 p. 210

for proof].

Theorem 4.4.3. Let F : D ⊆ X −→ Y be twice Fréchet differentiable. Furthermore sup-

pose that the (H) conditions,

U(x0,v?) ⊆ D, (4.4.18)

and hypotheses of Lemma 4.3.1 hold. Then, the sequence {xn} generated by Newton’s

method (4.1.2) is well defined, remains in U(x0, t
?) for all n ≥ 0 and converges to a unique

solution x? ∈U(x0, t
?) of equation F (x) = 0. Moreover, the following estimates hold for all

n ≥ 0:

‖xn+2−xn+1‖ ≤ vn+2 −vn+1 (4.4.19)

and

‖xn −x?‖ ≤ v?−vn (4.4.20)

where, sequence {vn} (n ≥ 0) is given by (4.3.5). Furthermore, if there exists R ≥ t?, such

that

U(x0,R)⊆ D (4.4.21)

and

L0(t
? +R) ≤ 2. (4.4.22)

The solution x? is unique in U(x0,R).
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4.5. Local Convergence

We study the local convergence of Newton’s method under the (A) conditions

A1. there exists x? ∈ D such that F (x?) = 0 and F ′(x?)−1 ∈ L(Y ,X )

A2.
∥∥F ′(x?)−1F ′′(x?)

∥∥≤ b

A3.
∥∥F ′(x?)−1[F ′′(x)−F ′′(x?)]

∥∥≤ c‖x−x?‖ for each x ∈ D

A4.
∥∥F ′(x?)−1[F ′(x)−F ′(x?)]

∥∥≤ d ‖x−x?‖ for each x ∈ D.

Note also that in view of (A3) and (A4), respectively, there exist c0 ∈ (0,c] and d0 ∈ (0,d]
such that for each θ ∈ [0,1]

A′
3.

∥∥∥F ′(x?)−1
(

F ′′(x0 +θ(x?−x0))−F ′′(x?)
)∥∥∥ ≤ c0(1−θ)‖x0 −x?‖

A′
4.

∥∥∥F ′(x?)−1
(

F ′(x0)−F ′(x?)
)∥∥∥ ≤ d0(1−θ)‖x0 −x?‖ .

Then, we can show:

Theorem 4.5.1. Suppose that (A) conditions hold and

U(x?, r)⊆ D, (4.5.1)

where

r =
2

b

2
+d +

√(b

2
+d
)2

+
4c

3

. (4.5.2)

Then, sequence {xn} (starting from x0 ∈ U(x?, r)) generated by Newton’s method (4.1.2) is

well defined, remains in U(x?, r) for all n ≥ 0 and converges to x?. Moreover the following

estimates hold

‖xn+1 −x?‖ ≤ en ‖xn −x?‖2 , (4.5.3)

en =

c

3
‖xn −x?‖+

b

2

1−d ‖xn −x?‖
and q(t) =

ct

3
+

b

2
1−dt

t (4.5.4)

where

c =

{
c0 if n = 0,

c if n > 0,
d =

{
d0 if n = 0,

d if n > 0.

Proof. The starting point x0 ∈ U(x?, r). Then, suppose that xk ∈ U(x?, r) for all k ≤ n.

Using (A4) and the definition of r we get that

∥∥F ′(x?)−1(F ′(xk)−F ′(x?))
∥∥≤ d ‖xk −x?‖ < dr < 1. (4.5.5)
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It follows from (4.5.5) and the Banach lemma on invertible operators that F ′(xk)
−1 exists

and ∥∥F ′(xk)
−1F ′(x?)

∥∥≤ 1

1−d ‖xk −x?‖ . (4.5.6)

Hence, xk+1 exists. Using (4.1.2), we obtain the approximation

x?−xk+1 =−F ′(xk)
−1F ′(x?)

[Z 1

0
F ′(x?)−1

(
F ′′(xk +θ(x?−xk))−F ′′(x?)

)
+F ′′(x?)

]

(x?−xk)
2(1−θ)dθ (4.5.7)

In view of (A2), (A3), (A4), (4.5.6), (4.5.7) and the choice of r we have in turn that

‖xk+1−x?‖ ≤ c
R 1

0 (1−θ)2‖xk −x?‖3
dθ+b

R 1
0 (1−θ)dθ‖xk −x?‖2

1−d ‖xk −x?‖
≤ ek ‖xk −x?‖2 < q(r)‖xk −x?‖ = ‖xk −x?‖ (4.5.8)

which implies that xk+1 ∈ U(x?, r) and limk→∞ xk = x?.

Remark 4.5.2. The local results can be used or projection methods such as Arnolds, the

generalized minimum residual method (GMRES), the generalized conjugate method (GCR)

for combined Newton/finite projection methods and in connection with the mesh inde-

pendence principle to develop the cheapest and most efficient mesh refinement strategies

[7, 8, 4, 15, 16]. These results can also be used to solve equations of the form (4.1.1),

where F ′, F ′′ satisfy differential equations of the form

F ′(x) = P (F (x)) and F ′′(x) = Q (F (x)). (4.5.9)

where, P and Q are known operators. Since, F ′(x?) = P (F (x?)) = P (0) and F ′′(x?) =

Q (F (x?)) = Q (0) we can apply our results without actually knowing the solution x? of

equation (4.1.1).

4.6. Numerical Examples

Example 1. Let X = Y = R be equipped with the max-norm, x0 = ω, D =

[−exp(1),exp(1)]. Let us define F on D by

F (x) = x3 −exp(1). (4.6.1)

Here, ω ∈ D. Through some algebraic manipulations, we obtain





η =
|ω3 −exp(1)|

3ω2
, K =

4exp(1)

ω2
, L0 =

2exp(1)+ω

ω2
, K0 =

2

ω

M =
2

ω2
, M0 =

2

ω2
.

For ω = 0.48exp(1), the criteria (4.1.3) and (4.1.6) yield

0.09730789545≤ 0.07755074734 and 0.09730789545≤ 0.2856823952
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Table 4.6.1. Newton’s method applied to (4.4.11)

n xn ‖xn+2−xn+1‖ ‖xn −x?‖
0 1.30e+00 6.44e−03 9.08e−02

1 1.40e+00 2.98e−05 6.47e−03

2 1.40e+00 6.37e−10 2.98e−05

3 1.40e+00 2.91e−19 6.37e−10

4 1.40e+00 6.06e−38 2.91e−19

5 1.40e+00 2.63e−75 6.06e−38

6 1.40e+00 4.95e−150 2.63e−75

7 1.40e+00 1.76e−299 4.95e−150

8 1.40e+00 2.22e−598 1.76e−299

9 1.40e+00 3.52e−1196 2.22e−598

respectively. Thus we observe that the criterion (4.1.3) fails while the criterion (4.1.6)

holds. From the hypothesis of Lemma 4.2.1, we get

0.09730789545≤
{

0.2017739733 if 0.08268226632≤ 0.2499999999

0.2036729480 if 0.2499999999≤ 0.08268226632.

Thus the hypothesis of Lemma 4.2.1 hold. As a consequence, we can apply the Theorem

4.4.1. The table 4.6.1 reports convergence behavior of Newton’s method (4.1.2) applied to

(4.4.11) with x0 = 1 and ψ = 0.55. Numerical computations are performed to the decimal

point accuracy of 2005 by employing the high-precision library ARPREC. The Table 4.6.2

reports behavior of series {tn} (4.2.5). Comparing Tables 4.6.1 and 4.6.2, we observe that

Table 4.6.2. Sequences {tn} (4.2.5)

n tn tn+2− tn+1 t?− tn
0 0.00e+00 4.95e−02 1.69e−01

1 9.73e−02 1.87e−02 7.16e−02

2 1.47e−01 3.26e−03 2.21e−02

3 1.66e−01 1.02e−04 3.36e−03

4 1.69e−01 1.01e−07 1.02e−04

5 1.69e−01 9.75e−14 1.01e−07

6 1.69e−01 9.16e−26 9.75e−14

7 1.69e−01 8.08e−50 9.16e−26

8 1.69e−01 6.30e−98 8.08e−50

9 1.69e−01 3.82e−194 6.30e−98

the estimates of Theorem 4.4.1 hold.

Example 2. In this example, we provide an application of our results to a special nonlinear
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Hammerstein integral equation of the second kind. Consider the integral equation

x(s) = 1+
4

5

Z 1

0
G(s, t)x(t)3dt, s ∈ [0,1], (4.6.2)

where, G is the Green kernel on [0,1]× [0,1] defined by

G(s, t) =

{
t(1− s), t ≤ s;

s(1− t), s ≤ t.
(4.6.3)

Let X = Y = C [0,1] and D be a suitable open convex subset of X1 := {x ∈ X : x(s) > 0, s ∈
[0,1]}, which will be given below. Define F : D → Y by

[F (x)](s) = x(s)−1− 4

5

Z 1

0
G(s, t)x(t)3dt, s ∈ [0,1]. (4.6.4)

The first and second derivatives of F are given by

[F (x)′y](s) = y(s)− 12

5

Z 1

0
G(s, t)x(t)2y(t)dt, s ∈ [0,1], (4.6.5)

and

[F (x)′′yz](s) =
24

5

Z 1

0
G(s, t)x(t)y(t)z(t)dt, s ∈ [0,1], (4.6.6)

respectively. We use the max-norm. Let x0(s) = 1 for all s ∈ [0,1]. Then, for any y ∈ D, we

have

[(I−F ′(x0))(y)](s) =
12

5

Z 1

0
G(s, t)y(t)dt, s ∈ [0,1], (4.6.7)

which means

‖I−F ′(x0)‖ ≤
12

5
max

s∈[0,1]

Z 1

0
G(s, t)dt =

12

5×8
=

3

10
< 1. (4.6.8)

It follows from the Banach theorem that F ′(x0)
−1 exists and

‖F ′(x0)
−1‖ ≤ 1

1− 3

10

=
10

7
. (4.6.9)

On the other hand, we have from (4.4.7) that

‖F (x0)‖ =
4

5
max

s∈[0,1]

Z 1

0
G(s, t)dt =

1

10
.

Then, we get η = 1/7. Note that F ′′(x) is not bounded in X or its subset X1. Take into

account that a solution x? of equation (4.1.1) with F given by (4.4.6) must satisfy

‖x?‖−1− 1

10
‖x?‖3 ≤ 0, (4.6.10)
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i.e., ‖x?‖ ≤ ρ1 = 1.153467305 and ‖x?‖ ≥ ρ2 = 2.423622140, where ρ1 and ρ2 are the

positive roots of the real equation z−1−z3/10 = 0. Consequently, if we look for a solution

such that x? < ρ1 ∈X1, we can consider D :={x : x∈X1 and ‖x‖< r}, with r∈ (ρ1,ρ2),
as a nonempty open convex subset of X . For example, choose r = 1.7. Using (4.3.7) and

(4.3.8), we have that for any x,y, z ∈ D

∥∥[(F ′(x)−F ′(x0))y
]
(s)
∥∥=

12

5

∥∥∥∥
Z 1

0
G(s, t)(x(t)2−x0(t)

2)y(t)dt

∥∥∥∥

≤ 12

5

Z 1

0
G(s, t)‖x(t)−x0(t)‖‖x(t)+x0(t)‖y(t)dt

≤ 12

5

Z 1

0
G(s, t) (r +1)‖x(t)−x0(t)‖y(t)dt, s ∈ [0,1]

(4.6.11)

and

‖(F ′′(x)yz)(s)‖=
24

5

Z 1

0
G(s, t)x(t)y(t)z(t)dt, s ∈ [0,1]. (4.6.12)

Then, we get

‖F ′(x)−F ′(x0)‖ ≤
12

5

1

8
(r +1)‖x−x0‖=

81

100
‖x−x0‖, (4.6.13)

‖F ′′(x)‖ ≤ 24

5
× r

8
=

51

50
(4.6.14)

and

∥∥[[F ′′(x)−F ′′(x)
]

yz
]
(s)
∥∥=

24

5

∥∥∥∥
Z 1

0
G(s, t)(x(t)−x(t)))y(t)z(t)

∥∥∥∥dt (4.6.15)

≤ 24

5

1

8
‖x−x‖ =

3

5
‖x−x‖. (4.6.16)

Now we can choose constants as follows:

η =
1

7
, M =

6

7
, M0 =

6

7
, K =

51

35
, L0 =

49

70
and K0 =

11

15
.

From (4.1.3) and (4.1.5), we obtain

0.1428571429 < 0.3070646192 and R1 = 0.1627780248.

From (4.1.6) and (4.1.8), we get

0.1428571429 < 0.4988741112 and R2 = 0.1518068730.

From the hypotheses (4.2.4) and (4.3.4) we get

1

7
≤
{

0.5047037049 if 0.1000000000≤ 0.2131833880

0.5228360736 if 0.2131833880≤ 0.1000000000
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Table 4.6.3. Comparison among the sequences (4.2.5), (4.2.35), (4.3.5) and (4.3.22)

n tn sn vn un

0 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00

1 1.428571e−01 1.428571e−01 1.428571e−01 1.428571e−01

2 1.598408e−01 1.514801e−01 2.042976e−01 1.516343e−01

3 1.600782e−01 1.515408e−01 2.356037e−01 1.516661e−01

4 1.600783e−01 1.515408e−01 2.527997e−01 1.516661e−01

5 1.600783e−01 1.515408e−01 2.626215e−01 1.516661e−01

6 1.600783e−01 1.515408e−01 2.683548e−01 1.516661e−01

7 1.600783e−01 1.515408e−01 2.717435e−01 1.516661e−01

8 1.600783e−01 1.515408e−01 2.737612e−01 1.516661e−01

9 1.600783e−01 1.515408e−01 2.749678e−01 1.516661e−01

and

1

7
≤
{

0.6257238049 if 0.1000000000≤ 0.2691240473

0.5832936968 if 0.2691240473≤ 0.1000000000

respectively. Thus hypotheses (4.2.4) and (4.3.4) hold. Comparison – among sequences

(4.2.5), (4.2.35), (4.3.5) and (4.3.22) is reported in Table 4.6.3. In the Table 4.6.3, we

observe that the estimates (4.2.36) and (4.3.23) hold.

Concerning the uniqueness balls. From equation (4.1.5), we get R1 = 0.1627780248

and from equation (4.1.8), we get R2 = 0.1518068730. Whereas from Theorem 4.4.1, we

get R ≤ 1.257142857. Therefore, the new approach provides the largest uniqueness ball.

Example 3. Let us consider the case when X = Y = R, D = U(0,1) and define F on D
by

F (x) = ex −1. (4.6.17)

Then, we can define P (x) = x+1 and Q (x) = x+1. In order for us to compare our radius

of convergence with earlier ones, let us introduce the Lipschitz condition

∥∥F ′(x?)−1(F ′(x)−F ′(y))
∥∥≤ L ‖x−y‖ for each x,y ∈ D. (4.6.18)

The radius of convergence given by Traub-Wozniakowski [7, 8, 16] is

r0 =
2

3L
(4.6.19)

The radius of convergence given by us in [5, 6, 7, 8]

r1 =
2

2d +L
(4.6.20)

Using (A2), (A3), (A4) and (4.6.18), we get that b = 1, c = d = e−1 and L = e. Then, using

(4.5.2), (4.6.19) and (4.6.20), we obtain

r = 0.4078499356 > r1 = 0.324947231 > r0 = 0.245252961.
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Example 4. Let X = Y = R
3, D = U(0,1), x∗ = (0,0,0) and define function F on D by

F (x,y, z) =

(
ex −1,

e−1

2
y2 +y, z

)T

. (4.6.21)

We have that for u = (x,y, z)

F ′(u) =




ex 0 0

0 (e−1)y+1 0

0 0 1


 ,

F ′′(u) =




ex 0 0 0 0 0 0 0 0

0 0 0 0 e−1 0 0 0 0

0 0 0 0 0 0 0 0 0




and

F ′′′(u) =




ex 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0



 .

Using the (A) and (A′) conditions – and F ′(x∗) = diag{1,1,1} – we set

b = 1.0, c = c0 = c = d = d0 = d = e−1, L = e, and L0 = e−1.

We obtain

r = 0.4078499356.

Thus, r0 < r.

Table 4.6.4. Comparison among various iterative procedures

n ‖xn+1 − x?‖ en ‖xn − x?‖2 λn ‖xn − x?‖2
µn ‖xn − x?‖2

1 0.034624745433299 0.292667362771974 0.479494429606589 15.944478671072201

2 0.000669491177317 0.000677347930013 0.001732513344520 0.001798733838791

3 0.000000347374133 0.000000224639537 0.000000609893622 0.000000610302684

4 0.000000000000103 0.000000000000060 0.000000000000164 0.000000000000164

5 0.000000000000000 0.000000000000000 0.000000000000000 0.000000000000000

The following iterations have been used before

‖xn+1 −x?‖ ≤ pn‖xn −x?‖2
[6, 7, 8, 12],

‖xn+1 −x?‖ ≤ λn‖xn −x?‖2
[6, 7, 8]

‖xn+1 −x?‖ ≤ µn ‖xn −x?‖2
[16]

and

‖xn+1 −x?‖ ≤ ξn ‖xn −x?‖2
[6, 7, 8, 16]
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Table 4.6.5. Comparison among various iterative procedures

n ξn ‖xn −x?‖2

1 0.240445748047369

2 0.000661013573819

3 0.000000224531576

4 0.000000000000060

5 0.000000000000000

where

pn =
L/3‖xn −x?‖+b/2

1−d ‖xn −x?‖ , λn =
L/2

1−L0 ‖xn −x?‖ ,

µn =
L/2

1−L ‖xn −x?‖ and ξn =
L/3‖xn −x?‖+b/2

1−
(

L/2‖xn −x?‖+b
)
‖xn −x?‖

.

To compare the above iterations with the iteration (4.5.3), we produce the comparison

table 4.6.4 and 4.6.5, we apply Newton’s method (4.1.2) to the equation (4.6.21) with

x0 = (0.21,0.21,0.21)T. In the Table 4.6.4, we note that the estimate (4.5.3) – of Theo-

rem 4.5.1 – hold.
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Chapter 5

Expanding the Applicability of

Newton’s Method Using Smale’s

α-Theory

5.1. Introduction

Let X , Y be Banach spaces. Let U(x, r) and U(x, r) stand, respectively, for the open and

closed ball in X with center x and radius r > 0. Denote by L(X ,Y ) the space of bounded

linear operators from X into Y . In the present chapter we are concerned with the problem

of approximating a locally unique solution x? of equation

F(x) = 0, (5.1.1)

where F is a Fréchet continuously differentiable operator defined on U(x0,R) for some

R > 0 with values in Y .

A lot of problems from computational sciences and other disciplines can be brought in

the form of equation (5.1.1) using Mathematical Modelling [5, 13]. The solution of these

equations can rarely be found in closed form. That is why the solution methods for these

equations are iterative. In particular, the practice of numerical analysis for finding such

solutions is essentially connected to variants of Newton’s method [5, 13, 21, 22]. The study

about convergence matter of Newton methods is usually centered on two types: semilo-

cal and local convergence analysis. The semilocal convergence matter is, based on the

information around an initial point, to give criteria ensuring the convergence of Newton

methods; while the local one is, based on the information around a solution, to find es-

timates of the radii of convergence balls. We find in the literature several studies on the

weakness and/or extension of the hypothesis made on the underlying operators. There is a

plethora on local as well as semil-local convergence results, we refer the reader to [1]–[34].

The most famous among the semilocal convergence of iterative methods is the celebrated

Kantorovich theorem for solving nonlinear equations. This theorem provides a simple and

transparent convergence criterion for operators with bounded second derivatives F ′′ or the

Lipschitz continuous first derivatives [5, 13, 21, 22]. Another important theorem inaugu-

rated by Smale at the International Conference of Mathematics (cf. [28]), where the concept
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of an approximate zero was proposed and the convergence criteria were provided to deter-

mine an approximate zero for analytic function, depending on the information at the initial

point. Wang and Han [32, 31] generalized Smale’s result by introducing the γ-condition (see

(5.1.3)). For more details on Smale’s theory, the reader can refer to the excellent Dedieu’s

book [15, Chapter 3.3].

Newton’s method defined by

x0 is an initial point

xn+1 = xn −F ′(xn)
−1 F(xn) for each n = 0,1,2, · · · (5.1.2)

is undoubtedly the most popular iterative process for generating a sequence {xn} approxi-

mating x?. Here, F ′(x) denotes the Fréchet-derivative of F at x ∈ U(x0,R).

In the present chapter we expand the applicability of Newton’s method under the γ-

condition by introducing the notion of the center γ0-condition (to be precised in Defini-

tion 5.3.1) for some γ0 ≤ γ. This way we obtain tighter upper bounds on the norms of

‖ F ′(x)−1 F ′(x0) ‖ for each x ∈U(x0,R) (see (5.2.4), (5.2.2) and (5.2.3)) leading to weaker

sufficient convergence conditions and a tighter convergence analysis than in earlier studies

such as [14, 19, 27, 28, 31, 32]. The approach of introducing center-Lipschitz condition

has already been fruitful for expanding the applicability of Newton’s method under the

Kantorovich-type theory [3, 9, 11, 13].

Wang in his work [31] on approximate zeros of Smale (cf. [28, 29]) used the γ-Lipschitz

condition at x0

‖ F ′(x0)
−1 F ′′(x) ‖≤ 2γ

(1− γ ‖ x−x0 ‖)3

for each x ∈U(x0, r), 0 < r ≤ R,
(5.1.3)

where γ > 0 and x0 are such that γ ‖ x − x0 ‖< 1 and F ′(x0)
−1 ∈ L(Y ,X ) to show the

following semilocal convergence result for Newton’s method.

Theorem 5.1.1. Let F : U(x0,R)⊆ X −→Y be twice-Fréchet differentiable. Suppose there

exists x0 ∈ U(x0,R) such that F ′(x0)
−1 ∈ L(Y ,X ) and

‖ F ′(x0)
−1 F(x0) ‖≤ η; (5.1.4)

condition (5.1.3) holds and for α = γη

α ≤ 3−2
√

2; (5.1.5)

t? ≤ R, (5.1.6)

where

t? =
1+α−

√
(1+α)2 −8α

4γ
≤
(

1− 1√
2

)
1

γ
. (5.1.7)

Then, sequence {xn} generated by Newton’s method is well defined, remains in U(x0, t
?) for

each n = 0,1, · · · and converges to a unique solution x? ∈ U(x0, t
?) of equation F(x) = 0.

Moreover, the following error estimates hold

‖ xn+1−xn ‖≤ tn+1− tn (5.1.8)
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and

‖ xn+1 −x? ‖≤ t?− tn, (5.1.9)

where scalar sequence {tn} is defined by

t0 = 0, t1 = η,

tn+1 = tn +
γ (tn− tn−1)

2

(
2− 1

(1− γ tn)2

)
(1− γtn)(1− γtn−1)2

= tn−
ϕ(tn)

ϕ′(tn)

f or each n = 1,2, · · · ,

(5.1.10)

where

ϕ(t) = η− t +
γt2

1− γ t
. (5.1.11)

Notice that t? is the small zero of equation ϕ(t) = 0, which exists under the hypothesis

(5.1.5).

The chapter is organized as follows: sections 5.2. and 5.3. contain the semilocal and

local convergence analysis of Newton’s method. Applications and numerical examples are

given in the concluding section 5.4.

5.2. Semilocal Convergence of Newton’s Method

We need some auxiliary results. We shall use the Banach lemma on invertible operators

[5, 13, 21, 22]

Lemma 5.2.1. Let A,B be bounded linear operators, where A is invertible. Moreover,

‖ A−1 ‖‖ B ‖< 1. Then, A+B is invertible and

‖ (A+B)−1 ‖≤ ‖ A−1 ‖
1− ‖ A−1 ‖‖ B ‖ . (5.2.1)

We shall also use the following definition of Lipschitz and local Lipschitz conditions.

Definition 5.2.2. (see [14, p. 634], [34, p. 673]) Let F : U(x0,R) −→ Y be Fréchet-

differentiable on U(x0,R). We say that F ′ satisfies the Lipschitz condition at x0 if there

exists an increasing function ` : [0,R]−→ [0,+∞) such that

‖ F ′(x0)
−1 (F ′(x)−F ′(y)) ‖≤ `(r) ‖ x−y ‖

f or each x,y ∈ U(x0, r), 0 < r ≤ R.
(5.2.2)

In view of (5.2.2), there exists an increasing function `0 : [0,R]−→ [0,+∞) such that

the center-Lipschitz condition

‖ F ′(x0)
−1 (F ′(x)−F ′(x0)) ‖≤ `0(r) ‖ x−x0 ‖

f or each x ∈U(x0, r), 0 < r ≤ R
(5.2.3)

holds. Clearly,

`0(r)≤ `(r) for each r ∈ (0,R] (5.2.4)

holds in general and `(r)/`0(r) can be arbitrarily large [3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13].
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Lemma 5.2.3. (see [14, p. 638]) Let F : U(x0,R) −→ Y be Fréchet-differentiable on

U(x0,R). Suppose F ′(x0)
−1 ∈ L(Y ,X ) and there exist γ0 ≥ 0, γ ≥ 0 such that γ0 R < 1,

γR < 1. Then, F ′ satisfies conditions (5.2.2) and (5.2.3), respectively, with

`(r) :=
2γ

(1− γ r)3
(5.2.5)

and

`0(r) :=
γ0 (2− γ0 r)

(1− γ0 r)2
. (5.2.6)

Notice that with preceding choices of functions ` and `0 and since condition (5.2.4) is

satisfied, we can always choose γ0, γ such that

γ0 ≤ γ. (5.2.7)

From now on we assume that condition (5.2.7) is satisfied. We also need a result by Zabre-

jko and Nguen.

Lemma 5.2.4. (see [34, p. 673]) Let F : U(x0,R) −→ Y be Fréchet-differentiable on

U(x0,R). Suppose F ′(x0)
−1 ∈ L(Y ,X ) and

‖ F ′(x0)
−1 (F ′(x)−F ′(y)) ‖≤ λ(r) ‖ x−y ‖

f or each x,y ∈ U(x0, r), 0 < r ≤ R

for some increasing function λ : [0,R]−→ [0,+∞). Then, the following assertion holds

‖ F ′(x0)
−1 (F ′(x+ p)−F ′(x)) ‖≤ Λ(r+ ‖ p ‖)−Λ(r)

f or each x ∈U(x0, r), 0 < r ≤ R and ‖ p ‖≤ R− r,

where

Λ(r) =

Z r

0
λ(t)dt.

In particular, if

‖ F ′(x0)
−1 (F ′(x)−F ′(x0)) ‖≤ λ0(r) ‖ x−x0 ‖

f or each x ∈ U(x0, r), 0 < r ≤ R

for some increasing function λ0 : [0,R]−→ [0,+∞). Then, the following assertion holds

‖ F ′(x0)
−1 (F ′(x0 + p)−F ′(x0)) ‖≤ Λ0(‖ p ‖)

f or each 0 < r ≤ R and ‖ p ‖≤ R− r,

where

Λ0(r) =

Z r

0
λ0(t)dt.

Using the center-Lipschitz condition and Lemma 5.2.3, we can show the following

result on invertible operators.
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Lemma 5.2.5. Let F : U(x0,R) −→ Y be Fréchet-differentiable on U(x0,R). Suppose

F ′(x0)
−1 ∈L(Y ,X ) and γ0 R < 1 for some γ0 > 0 and x0 ∈ X ; center-Lipschitz (5.2.3) holds

on U0 = U(x0, r0), where `0(r) is given by (5.2.6) and r0 = (1− 1√
2
)

1

γ0

. Then F ′(x)−1 ∈
L(Y ,X ) on U0 and satisfies

‖ F ′(x)−1 F ′(x0) ‖≤
(

2− 1

(1− γ0 r)2

)−1

. (5.2.8)

Proof. We have by (5.2.3), (5.2.6) and x ∈U0 that

‖ F ′(x0)
−1 (F ′(x)−F ′(x0)) ‖≤ `0(r) r =

1

(1− γ0 r)2
−1 < 1.

The result now follows from Lemma 5.2.1. The proof of Lemma 5.2.5 is complete.

Using (5.1.3) a similar to Lemma 5.2.1, Banach lemma was given in [31] (see also

[27, 28, 29]).

Lemma 5.2.6. Let F : U(x0,R)−→Y be twice Fréchet-differentiable on U(x0,R). Suppose

F ′(x0)
−1 ∈ L(Y ,X ) and γR < 1 for some γ > 0 and x0 ∈ X ; condition (5.1.3) holds on

V0 = U(x0, r0), where r0 = (1− 1√
2
)

1

γ
. Then F ′(x)−1 ∈ L(Y ,X ) on V0 and satisfies

‖ F ′(x)−1 F ′(x0) ‖≤
(

2− 1

(1− γ r)2

)−1

. (5.2.9)

Remark 5.2.7. It follows from (5.2.7)–(5.2.9) that (5.2.8) is more precise upper bound on

the norm of F ′(x)−1 F ′(x0). This observation leads to a tighter majorizing sequence for

{xn} (see Proposition 5.2.10).

We can show the main following semilocal convergence theorem for Newton’s method.

Theorem 5.2.8. Suppose that

(a) There exist x0 ∈ X and η > 0 such that

F ′(x0)
−1 ∈ L(Y ,X ) and ‖ F ′(x0)

−1 F(x0) ‖≤ η;

(b) Operator F ′ satisfies Lipschitz and center-Lipschitz conditions (5.2.2) and (5.2.3) on

U(x0, r0) with `(r) and `(r) are given by (5.2.5) and (5.2.6), respectively;

(c) U0 ⊆U(x0,R);

(d) Scalar sequence {sn} defined by

s0 = 0, s1 = η,

s2 = s1 +
γ0 (s1− s0)

2

(
2− 1

(1− γ0 s1)2

)
(1− γ s1)

sn+2 = sn+1 +
γ (sn+1− sn)

2

(
2− 1

(1− γ0 sn+1)2

)
(1− γ sn+1) (1− γ sn)

2

f or each n = 1,2, · · ·

(5.2.10)
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satisfies for each n = 1,2, · · ·

sn < b =





1

γ
i f

γ0

γ
≤ 1− 1√

2

(1− 1√
2
)

1

γ0

i f
γ0

γ
≥ 1− 1√

2
.

(5.2.11)

Then, the following assertions hold

(i) Sequence {sn} is increasingly convergent to its unique least upper bound s? which

satisfies s? ∈ [s2,b], where b is given in (5.2.11).

(ii) Sequence {xn} generated by Newton’s method is well defined, remains in U(x0, s?)

for each n = 0,1, · · · and converges to a unique solution x? ∈ U(x0, s?) of equation

F(x) = 0. Moreover, the following estimates hold

‖ xn+1−xn ‖≤ sn+1− sn (5.2.12)

and

‖ xn −x? ‖≤ s?− sn for each n = 0,1,2, · · · . (5.2.13)

Proof. (i) It follows from (5.2.8) and (5.2.9) that sequence {sn} is increasing and

bounded above by 1/γ. Hence, it converges to s? ∈ [s2,b].

(ii) We use Mathematical Induction to prove that

‖ xk+1−xk ‖≤ sk+1− sk (5.2.14)

and

U(xk+1, s?− sk+1) ⊆ U(xk, s?− sk) for each k = 1,2, · · · . (5.2.15)

Let z ∈ U(x1, s?− s1). Then, we obtain that

‖ z−x0 ‖≤‖ z−x1 ‖ + ‖ x1 −x0 ‖≤ s?− s1 + s1 − s0 = s?− s0,

which implies z ∈U(x0, s?− s0). Note also that

‖ x1 −x0 ‖=‖ F ′(x0)
−1 F(x0) ‖≤ η = s1− s0.

Hence, estimates (5.2.14) and (5.2.15) hold for k = 0. Suppose these estimates hold

for natural integers n ≤ k. Then, we have that

‖ xk+1−x0 ‖≤
k+1

∑
i=1

‖ xi −xi−1 ‖≤
k+1

∑
i=1

(si − si−1) = sk+1− s0 = sk+1

and

‖ xk +θ (xk+1−xk)−x0 ‖≤ sk +θ (sk+1− sk) ≤ s? for all θ ∈ (0,1).
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Using (5.2.2), Lemma 5.2.1 for x = xk+1 and the induction hypotheses we get that

‖ F ′(x0)
−1 (F ′(xk+1)−F ′(x0)) ‖ ≤ 1

(1− γ0 ‖ xk+1−x0 ‖)2
−1

≤ 1

(1− γ0 sk+1)2
−1 < 1.

(5.2.16)

It follows from (5.2.16) and the Banach lemma 5.2.1 on invertible operators that

F ′(xk+1)
−1 exists and

‖ F ′(xk+1)
−1 F ′(x0) ‖≤

(
2− 1

(1− γ0 sk+1)2

)−1

. (5.2.17)

Using (5.1.2), we obtain the approximation

F(xk+1) = F(xk+1)−F(xk)−F ′(xk) (xk+1−xk)

=

Z 1

0
(F ′(xτ

k)−F ′(xk))dτ(xk+1−xk),
(5.2.18)

where xτ
k = xk +τ (xk+1−xk) and xτs

k = xk +τ s (xk+1−xk) for each 0 ≤ τ, s≤ 1. Then

by (5.2.18) for k = 0, (5.2.3) and (5.2.6), we get that

‖ F ′(x0)
−1 F(x1) ‖

≤
Z 1

0
‖ F ′(x0)

−1 (F ′(x0 +τ(x1 −x0))−F ′(x0)) ‖ dτ ‖ x1 −x0 ‖

≤
Z 1

0

(
1

(1− γ0 τ(‖ x1 −x0 ‖)2
−1

)
dτ ‖ x1 −x0 ‖

=
γ0 ‖ x1 −x0 ‖2

1− γ0 ‖ x1 −x0 ‖
≤ γ0 (s1− s0)

2

1− γ0 s1

.

Moreover, it follows from Lemma 5.2.4, (5.2.2) and (5.2.18) in turn for k = 1,2, · · ·
that

‖ F ′(x0)
−1 F(xk+1) ‖

≤
Z 1

0
‖ F ′(x0)

−1 (F ′(xτ
k)−F ′(xk)) ‖ dτ ‖ xk+1 −xk ‖

≤
Z 1

0

Z 1

0

2γτdsdτ ‖ xk+1 −xk ‖2

(1− γ ‖ xτ s
k
−x0 ‖)3

≤
Z 1

0

Z 1

0

2γτdsdτ ‖ xk+1−xk ‖2

(1− γ ‖ xk −x0 ‖ −γτs ‖ xk+1−xk ‖)3

=
γ ‖ xk+1 −xk ‖2

(1− γ ‖ xk −x0 ‖ −γ ‖ xk+1−xk ‖) (1− γ ‖ xk −x0 ‖)2

≤ γ (sk+1− sk)
2

(1− γ sk+1) (1− γ sk)2

(‖ xk+1−xk ‖
sk+1− sk

)2

≤ γ (sk+1− sk)
2

(1− γ sk+1) (1− γ sk)2
.

(5.2.19)

(see also [27, p. 33, estimate (3.19)]) Then, in view of (5.1.2), (5.2.10), (5.2.17) and
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the preceding two estimates we obtain that

‖ x2 −x1 ‖ ≤ ‖ F ′(x1)
−1 F(x0) ‖‖ F ′(x0)

−1 F(x1) ‖

≤ 1

2− 1

(1− γ0 s1)2

γ0 (s1− s0)
2

1− γ0 s1

= s2 − s1

and for k = 1,2, · · ·

‖ xk+2−xk+1 ‖=‖ (F ′(xk+1)
−1 F ′(x0)) (F ′(x0)

−1 F(xk+1)) ‖
≤‖ F ′(xk+1)

−1 F ′(x0) ‖‖ F ′(x0)
−1 F(xk+1) ‖

≤ 1

2− 1

(1− γ0 sk+1)2

γ (sk+1− sk)
2

(1− γ sk+1) (1− γ sk)2
= sk+2− sk+1.

(5.2.20)

Hence, we showed (5.2.14) holds for all k ≥ 0. Furthermore, let w ∈ U(xk+2, s? −
sk+2). Then, we have that

‖ w−xk+1 ‖ ≤ ‖ w−xk+2 ‖ + ‖ xk+2−xk+1 ‖
≤ s?− sk+2 + sk+2− sk+1 = s?− sk+1.

(5.2.21)

That is w ∈ U(xk+1, s?− sk+1). The induction for (5.2.14) and (5.2.15) is now com-

pleted. Lemma 5.2.5 implies that {sn} is a complete sequence. It follows from

(5.2.14) and (5.2.15) that {xn} is also a complete sequence in a Banach space X
and as such it converges to some x? ∈ U(x0, s?) (since U(x0, s?) is a closed set). By

letting k −→ ∞ in (5.2.19) we get F(x?) = 0. Estimate (5.2.13) is obtained from

(5.2.12) by using standard majorization techniques (cf. [5, 13, 21, 28, 29]). Finally,

to show the uniqueness part, let y? ∈ U(x0, s?) be a solution of equation (5.1.1). Us-

ing (5.2.3) for x replaced by z? = x? + τ(y?− x?) and G =

Z 1

0
F ′(z?)dτ we get as in

(5.2.9) that ‖ F ′(x0)
−1 (G −F ′(x0)) ‖< 1. That is G−1 ∈ L(Y ,X ). Using the identity

0 = F(x?)−F(y?) = G (x?−y?), we deduce x? = y?.

Remark 5.2.9. (a) The convergence criteria in Theorem 5.2.8 are weaker than in The-

orem 5.1.1. In particular, Theorem 5.1.1 requires that operator F is twice Fréchet-

differentiable but our Theorem 5.2.8 requires only that F is Fréchet-differentiable.

Notice also that if F is twice Fréchet-differentiable, then (5.2.2) implies (5.1.3).

Moreover, in view of (5.1.7) and (5.2.9), we have that (5.1.5) =⇒ (5.2.11) but not

necessarily vice versa. Therefore, Theorem 5.2.8 can apply in cases when Theorem

5.1.1 cannot.

(b) Estimate (5.2.11) can be checked, since scalar sequence is based on the initial data

γ0, γ and η, especially in the case when si = si+n for some finite i. At this point, we

would like to know if it is possible to find convergence criteria stronger than (5.2.11)

but weaker than (5.1.5). To this extend we first compare our majorizing sequence

{sn} to the old majorizing sequence {tn}.
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Proposition 5.2.10. Let F : U(x0,R) −→ Y be twice Fréchet-differentiable on U(x0,R).

Suppose that hypotheses of Theorem 5.1.1 and the center-Lipschitz condition hold on

U(x0, r0). Then, the following assertions hold

(a) Scalar sequences {tn} and {sn} are increasingly convergent to t?, s?, respectively.

(b) Sequence {xn} generated by Newton’s method is well defined, remains in U(x0, r0)
for each n = 0,1, · · · and converges to a unique solution x? ∈ U(x0, r0) of equation

F(x) = 0. Moreover, the following estimates hold for each n = 0,1, · · ·

sn ≤ tn, (5.2.22)

sn+1− sn ≤ tn+1− tn, (5.2.23)

s? ≤ t?, (5.2.24)

‖ xn+1−xn ‖≤ sn+1− sn

and

‖ xn −x? ‖≤ s?− sn.

Proof. According to Theorems 5.1.1 and 5.2.8 we only need to show (5.2.22) and (5.2.23),

since (5.2.24) follows from (5.2.22) by letting n → ∞. It follows from the definition of

sequences {tn} and {sn} (see (10) and (21)) that t0 = s0, t1 = s1, s2 ≤ t2 and s2−s1 ≤ t2−t1,

since γ0 ≤ γ,

1

1− γ0 s0

≤ 1

1− γ t0
,

1

1− γ s1

=
1

1− γ t1
(5.2.25)

and

1

2− 1

(1− γ0s1)2

≤ 1

2− 1

(1− γ0t1)2

. (5.2.26)

Hence, (5.2.22) and (5.2.23) hold for n = 0,1,2. Suppose that (5.2.22) and (5.2.23) hold

for all k ≤ n. Then, we have that sk+1 ≤ tk+1 and sk+1− sk ≤ tk+1− tk, since γ0 ≤ γ,

1

1− γ sk−1

≤ 1

1− γ tk−1

,
1

1− γ sk

≤ 1

1− γ tk
(5.2.27)

and

1

2− 1

(1− γ0sk)2

≤ 1

2− 1

(1− γ0tk)2

. (5.2.28)
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Remark 5.2.11. In view of (5.2.22)–(5.2.24), our error analysis is tighter and the informa-

tion on the location of the solution x? is at least as precise as the old one. Notice also that

estimates (5.2.22) and (5.2.23) hold as strict inequalities for n > 1 if γ0 < γ (see also the

numerical examples) and these advantages hold under the same or less computational cost

as before (see Remark 5.2.9).

Next, we present our [11, Theorem 3.2]. This theorem shall be used to show that (5.1.5)

can be weakened.

Theorem 5.2.12. Let F : U(x0,R) ⊆ X −→ Y be Fréchet-differentiable. Suppose there

exist parameters L ≥ L0 > 0 and η > 0 such that for all x,y ∈ U(x0,R)

F ′(x0)
−1 ∈ L(Y ,X ), ‖ F ′(x0)

−1 F(x0) ‖≤ η,

‖ F ′(x0)
−1 (F ′(x)−F ′(x0)) ‖≤ L0 ‖ x−x0 ‖, (5.2.29)

‖ F ′(x0)
−1 (F ′(x)−F ′(y)) ‖≤ L ‖ x−y ‖, (5.2.30)

s? := lim
n−→∞

sn ≤ R

and

h1 = 2L1 η ≤ 1, (5.2.31)

where

s0 = 0, s1 = η, s2 = η+
L0 η2

2(1−L0 η)
,

sn+1 = sn +
L(sn − sn−1)

2

2(1−L0 sn)
f or each n = 2,3, · · ·

and L1 =
1

8
(4L0 +

√
L0 L+

√
L0 L+8L2

0). Then, the following assertions hold

(a) Sequence {sn} is increasing convergent to its unique least upper bound s?, which

satisfies

s2 ≤ s? ≤ s?? = δη,

where

δ = 1+
L0 η

2(1−β) (1−L0 η)

and

β =
2L

L+
√

L2 +8L0 L
.

(b) Sequence {xn} generated by Newton’s method is well defined, remains in U(x0, s?)
for each n = 0,1, · · · and converges to a solution x? ∈U(x0, s?) of equation F(x) = 0.

Moreover, the following estimates hold for each n = 0,1, · · ·

‖ xn+1−xn ‖≤
L ‖ xn −xn−1 ‖

2(1−L0 ‖ xn −x0 ‖)
≤ sn+1− sn

and

‖ xn −x? ‖≤ s?− sn.
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(c) If there exists ς > s? such that ς < R and L0 (s? + ς) ≤ 2, then, the solution x? of

equation F(x) = 0 is unique in U(x0,ς).

Remark 5.2.13. (a) If L0 = L, convergence criterion (5.2.31) reduces to the famous for

its simplicity and clarity Kantorovich hypothesis [21] for solving equations

h = 2Lη ≤ 1. (5.2.32)

Notice that

L0 ≤ L (5.2.33)

holds in general and L0/L can be arbitrarily small [11, 13]. We also have that

h ≤ 1 =⇒ h1 ≤ 1 (5.2.34)

and
h1

h0

−→ 0 as
L0

L
−→ 0.

Moreover, the Kantorovich majorizing sequence is given by

s0 = 0, sn+1 = sn −
p(sn)

p′(sn)
= sn −

L(sn − sn−1)
2

p′(sn)
for each n = 0,1,2, · · · ,

where p(t) = (L/2) t2− t +η. If (5.2.32) is satisfied then (see [11])

sn ≤ sn,

sn+1− sn ≤ sn+1 − sn

and

s? ≤ s? = lim
n−→∞

sn =
2η

1+
√

1−h
.

(b) Let us show that Wang’s convergence criterion (5.1.5) can be weakened under the

Kantorovich hypotheses. In particular, suppose that (5.2.30) and (5.2.32) are satis-

fied. Then, (5.2.31) is also satisfied. Moreover, if F is twice Fréchet-differentiable on

U(x0,1/γ), then Wang’s condition (5.1.3) is certainly satisfied, if we choose γ = L/2.

Then, condition (5.2.32) becomes

γη ≤ 1

4
, (5.2.35)

which improves (5.1.5). We must also show that s? ≤ 1/γ. But the preceding inequal-

ity reduces to showing that h−2 ≤ 2
√

1−h, which is true by (5.2.32). Clearly, in

view of (5.2.31), (5.2.33)–(5.2.35), criterion (5.1.5) (i.e., (5.2.35)) can be improved

even further, for γ0 = L0/2, if L0 ≤ L.
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(c) Suppose Wang’s condition (5.1.3) is satisfied as well as criterion (5.1.5) on U(x0, r0).

Recall that r0 = (1− 1√
2
) 1

γ . Then, for r ∈ [0, r0], we have that 1/(1−γ r)≤
√

2. Then,

in view of (5.1.3) and (5.2.30), we can choose L = 4
√

2γ. Then, (5.1.5) becomes

Lη ≤ 4(3
√

2−4) = .970562748.

However, we must also have that t? ≤ 1/L, where t? is given in (5.1.7). By direct

algebraic manipulation, we see that the preceding inequality is satisfied, if

.078526267 =
2
√

2(2
√

2−1)

8−
√

2
≤ Lη ≤ 4

√
2

8
√

2−1
= .548479169.

Hence, the last two estimates on ”Lη” are satisfied, if the preceding inequality is

satisfied, which is weaker than (5.2.32) for Lη ∈ (.5, .548479169]. However, the

preceding inequality may not be weaker than (5.2.31) (if γ0 = L0/2) for L0 sufficiently

smaller than L.

Next, we present the following specialization of Theorem 5.2.12 for Newton-

Kantorovich method and analytic operators defined on U(x0,R). In the following theorem

and for ε = γ0/γ, interval I is defined by

I =

{
(0,1) i f ε ≤ (

√
2−1)/

√
2

(0,ε−1 (
√

2−1)/
√

2) i f ε > (
√

2−1)/
√

2.

Theorem 5.2.14. Let F : U(x0,R)⊆ X → Y be Fréchet-differentiable in U(x0,R). Define

functions f , H and H1 on interval I by

f (r) = g(r) r α− 1

2
, H1(r) =

αε(2− r)

(1−εr)2

and

H(r) =


1+

αε(2− r)

(1−εr)2

2(1−β)

(
1− αε(2− r)

(1−εr)2

)


α− r,

where

g(r) =
1

8

[
4ε(2− r)

(1−εr)2
+

√
2ε(2− r)

(1−εr)2 (1− r)3
+

√
2ε(2− r)

(1−εr)2 (1− r)3
+

8ε2 (2− r)2

(1−εr)4

]
.

Suppose that there exist intervals I f , IH and IH1
such that for some α ∈ I

I f ⊂ I, IH ⊂ I, IH1
⊂ I,

f (r)≤ 0 for each r ∈ I f , (5.2.36)

H(r)≤ 0 for each r ∈ IH , (5.2.37)

H1(r) ≤ 1 for each r ∈ IH1
(5.2.38)
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and

I0 = I f ∩ IH ∩ IH1
6= /0.

Denote by r? = r?(α) the largest element in I0. Moreover, suppose there exists a point

x0 ∈U(x0,R) such that F ′(x0)
−1 ∈ Ł(Y ,X ) and

r?

γ
≤ R. (5.2.39)

Then, the following assertions hold

(a) Scalar sequence {sn} is increasingly convergent to s? which satisfies

η ≤ s? ≤ s?? = δη,

where

δ = 1+
L0 η

2(1−β)(1−L0 η)
,

β =
2L

L+
√

L2 +8L0 L
=

2M

M +
√

M2 +8M0 M
,

M0 =
L0

γ
, M =

L

γ

L0 =
γ(2−εr?)

(1−ε r?)2
and L =

2γ

(1− r?)3
, (5.2.40)

where sequence {sn}, s? and s?? are given in Theorem 5.2.12.

(b) The conclusions (a) and (b) of Theorem 5.2.12 hold.

Proof. Notice that if follows from (5.2.38) that H(r)+ r ≥ 0 for each r ∈ IH . We have by

s? ≤ s?? and (5.2.36) that γ s? ≤ γs?? ≤ H(r?) ≤ r? < 1. Then, we showed in [5] (see also

[13]) that (5.2.2) and (5.2.3) are satisfied for functions L0 and L given by (5.2.40). Using

these choices of L0 and L we must show that (5.2.9) is satisfied. That is we must have

h3 = g(r?)α ≤ α

2r?
≤ 1

2
,

which is true by the choice of r? in (5.2.36) and (5.2.39). Notice also that by (5.2.37) and

(5.2.38), we have s? ≤ r?/γ. The rest follows from Theorem 5.2.8.

Remark 5.2.15. (a) It follows from the proof of Theorem 5.2.8 that function f can be

replaced by f 1 defined by

f 1(r) = g(r)α− 1

2
. (5.2.41)

In practice, we shall employ both functions to see which one will produce the largest

possible upper bound r? for α.

(b) It is worth noticing that

L0(r) < L(r) for all r ∈ (0,1).
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(c) Notice that it follows from (5.2.37) and (5.2.38) that α ≤ r?.

In the case when F is Fréchet-differentiable on X , we have the following result.

Proposition 5.2.16. Let F : X → Y be analytic. Suppose that there exists a point x0 ∈ D
such that F ′(x0)

−1 ∈ L(Y ,X ) and for each r in some interval IH2
such that /0 6= IH2

⊂ I, we

have that

H2(r) = g(r)− 1

2r
≤ 0 (5.2.42)

Denote by r1 the largest element in IH2
. Moreover, suppose

α ≤ r1 = 0.179939475 . . .. (5.2.43)

Then, the conclusions of Theorem 5.2.8 hold.

Proof. It follows by the choice of r1 that

g(r1) ≤
1

2r1

. (5.2.44)

Using (5.2.43) and (5.2.44) we get

h3 = g(r1)α =
1

2r1

α ≤ 1

2
.

Notice that condition (5.2.39) is satisfied automatically.

The results obtained in this chapter can be connected to the following notion [14].

Definition 5.2.17. A point x0 is said to be an approximate zero of the first kind for F if {xn}
is well defined for each n = 0,1, · · · and satisfies

‖xn+1−xn‖ ≤ Ξ2n−1 ‖x1 −x0‖ f or some Ξ ∈ (0,1). (5.2.45)

Notice that if we start from an approximate zero x0 of the first kind then, the convergence of

Newton-Kantorovich method to x? is very fast.

In view of the estimate

‖xn+1 −xn‖ ≤
L

2(1−L0 sn)
‖xn −xn−1‖2

we get that

L

2(1−L0 s)
≤ L

2(1−L0 s?)
≤ γ

(1− r)3

1

1− 2−r
(1−r)2 (H(r)+ r)

≤ 1

η

provided that
2− r

(1− r)2
(H(r)+ r) < 1 (5.2.46)

and

0 ≤ αψ(r)≤ Ξ < 1, (5.2.47)
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where

ψ(r) =
1

(1− r)3[1− 2−r
(1−r)2 (H(r)+ r)]

.

Conditions (5.2.46) and (5.2.47) must hold respectively in Theorem 5.2.8 and Proposition

5.2.10 for r = r?, r1. Then, x0 is an approximate zero of the first kind in all these results. If

γ0 = γ, then (5.2.42) holds for r1 = .179939475 · · ·. Using (5.2.45) we notice that (5.2.46)

and (5.2.47) hold at r1. It then follows that (5.2.45) is satisfied with factor Ξ/η, where Ξ is

given by Ξ = αψ(r1).

Remark 5.2.18. If F : D ⊆ X → Y is an analytic operator and x0 ∈ D. Let γ be defined

by (see [28, 29])

γ = sup
j>1

‖ 1

j!
F ′(x0)

−1 F ( j)(x0)‖
1

j−1 ,

or γ = ∞ if F ′(x0) is not invertible or the supremum in γ does not exist. Then, if D = X , the

sufficient convergence condition of Newton-Kantorovich method is given by α ≤ 0.130707.

Rheinboldt in [25] improved Smale’s result by showing convergence of Newton’s method

when α ≤ 0.15229240. Here, we showed convergence for α ≤ r1 = .179939475.

5.3. Local Convergence Analysis of Newton’s Method

We shall use similar definitions to (5.1.3), (5.2.2) and (5.2.3) to study the local convergence

of Newton’s method.

Definition 5.3.1. (see [30]) Let F : U(x?,R) ⊆ X → Y be twice Fréchet-differentiable on

U(x?,R) and F(x?) = 0. Let γ > 0 and let 0 < r ≤ 1/γ be such that r ≤ R. The operator F ′′

is said to satisfy the γ-Lipschitz condition at x? on U(x?, r) if

‖ F ′(x?)−1 F ′′(x) ‖≤ 2γ

(1− γ ‖ x−x? ‖)3
f or each x ∈U(x?, r). (5.3.1)

Definition 5.3.2. Let F : U(x?,R)−→Y be Fréchet-differentiable on U(x?,R) and F(x?) =
0. We say that F ′ satisfies the γ-Lipschitz condition at x? if there exists an increasing function

` : [0,R]−→ [0,+∞) such that

‖ F ′(x?)−1 (F ′(x)−F ′(y)) ‖≤ `(r) ‖ x−y ‖
f or each x,y ∈ U(x?, r), 0 < r ≤ R.

(5.3.2)

Definition 5.3.3. Let F : U(x?,R)−→Y be Fréchet-differentiable on U(x?,R) and F(x?) =

0. We say that F ′ satisfies the γ?-center-Lipschitz condition at x? if there exists an increasing

function `? : [0,R]−→ [0,+∞) such that

‖ F ′(x?)−1 (F ′(x)−F ′(x?)) ‖≤ `?(r) ‖ x−x? ‖
f or each x ∈ U(x?, r), 0 < r ≤ R.

(5.3.3)

Remark 5.3.4. (a) Notice again that `?(r)≤ `(r) and `/`? can be arbitrarily large.
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(b) In order for us to cover the local convergence analysis of Newton’s method, let us

define function fε : Iε = [0,
1

ε
(1− 1√

2
)] −→ R by

fε(t) = (1−ε t)2 (2− t) t − (1− t)2 (2(1−εt)2 −1). (5.3.4)

Suppose that

ε >
1

2
(1− 1√

2
). (5.3.5)

Then, we have that

fε(0) = −1 < 0 and fε(
1

ε
(1− 1√

2
)) =

1

ε
√

2
(1− 1√

2
) (2− 1

ε
(1− 1√

2
)) > 0.

Hence, it follows from the intermediate value theorem that function fε has a zero in
◦
I ε. Denote by µ?

ε the minimal such zero. Define function gε : Iε −→ R by

gε(t) =
(1−ε t)2 (2− t) t

(1− t)2 (2(1−ε t)2−1)
. (5.3.6)

Then, we have that

0 ≤ gε(t) < 1 f or each t ∈ [0,µ?
ε ]. (5.3.7)

Set

Rε =
µ?

ε

γ
. (5.3.8)

It follows from the definition of fε, µ?
ε and gε that

R1 =
3−

√
6

3γ
≤ Rε. (5.3.9)

Moreover, strict inequality holds if ε 6= 1. Let us assume that F satisfies the γ?-center-

Lipschitz condition at x? on U(x?,
1

εγ
(1− 1√

2
)) with F(x?) = 0 and the γ-Lipschitz

condition at x? on U(x?,
1

γ
). Then, for x0 ∈ U(x?,Rε), we have the identity

xn+1−x? = F ′(xn)
−1 (F(x?)−F(xn)−F ′(xn) (x?−xn))

= F ′(xn)
−1 F ′(x?)

Z 1

0
F ′(x?)−1 (F ′(xτ

n,?)−F ′(xn)) dτ(x?−xn),
(5.3.10)

where xτ
n,? = xn +τ(x?−xn). Set also

xτs
n,? = xn +τ s (x?−xn) f or each 0 ≤ t ≤ 1, 0 ≤ s ≤ 1.

As in Theorem 5.2.8 but using (5.3.2) and (5.3.3) for

`(r) =
2γ

(1− γ r)3
and `?(r) =

γ? (2− r)

(1− γ? r)2
,
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we get in turn as in (5.2.17) and (5.2.19), respectively, that

‖ F ′(xn)
−1 F ′(x?) ‖≤

(
2− 1

(1−εγ ‖ xn −x? ‖)2

)−1

(5.3.11)

and

‖
Z 1

0
(F ′(xτ

n,?)−F ′(xn)) dτ(x?−xn) ‖≤
Z 1

0

Z 1

0

2γ ‖ xτs
n,?−x? ‖ dsdτ

(1− γ s ‖ xτ s
n,?−x? ‖)3

‖ xτs
n,?−x? ‖≤

(
1

(1− γ ‖ xn −x? ‖)2
−1

)
‖ xn −x? ‖ .

(5.3.12)

That is we have by (5.3.10)–(5.3.12) that

‖ xn+1−x? ‖

≤ (1−ε γ ‖ xn −x? ‖)2 (1− (1− γ ‖ xn −x? ‖)2)

(2(1−εγ ‖ xn −x? ‖)2−1) (1− γ ‖ xn −x? ‖)2
‖ xn −x? ‖

< gε(µ?
ε) ‖ xn −x? ‖=‖ xn −x? ‖< Rε.

(5.3.13)

Estimate (5.3.13) shows that xn+1 ∈ U(x?,Rε) and lim
n→∞

xn = x?.

Hence we arrived at the following result on the local convergence for Newton’s method.

Theorem 5.3.5. Let F : U(x?,R) ⊆ X −→ Y be Fréchet-differentiable on U(x?,R). Sup-

pose that

(a) There exists x? ∈U(x0,R) such that F(x?) = 0 and F ′(x?)−1 ∈ L(Y ,X ).

(b) Operator F satisfies the center γ?-center-Lipschitz condition at x? on U(x?,
1

εγ
(1−

1√
2
)) for ε satisfying (5.3.5) and the γ-Lipschitz condition at x? on U(x?,

1

γ
).

Then, if x0 ∈ U(x?,Rε), sequence {xn} generated by Newton’s method is well defined, re-

mains in U(x?,Rε) for each n = 0,1, · · · and converges to x?. Moreover, the following

estimate holds

‖ xn+1 −xn ‖≤
γ (2− γ ‖ xn −x? ‖) (1−εγ ‖ xn −x? ‖)2

(1− γ ‖ xn −x? ‖)2 (2(1−ε ‖ xn −x? ‖)2 −1)
‖ xn −x? ‖2 . (5.3.14)

Remark 5.3.6. If ε = 1 (i.e. γ? = γ), our results reduces to the ones given by Wang [31]

(see also [30, 32]). Otherwise, if

1

2
(1− 1√

2
)≤ γ?

γ
< 1, (5.3.15)

then, according to (5.3.9) our convergence radius is larger. Moreover, our error bounds are

tighter if γ? < γ.
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Remark 5.3.7. Let us define function fε1 : Iε1 = [0,
1

ε1

] −→ R for ε1 > 0 by

fε1
(t) = (2− t) t− (1− t)2 (1−ε1 t). (5.3.16)

Suppose that

ε1 >
1

2
. (5.3.17)

Then, we have

fε1
(0) = −1 < 0 and fε1

(
1

ε1

) > 0.

Denote by µ?
ε1

the minimal zero of fε1
on

◦
I ε1

. Define function gε1
: Iε1

−→ R by

gε1
(t) =

(2− t) t

(1− t)2 (1−ε1 t)
. (5.3.18)

Then, we have that

0 ≤ gε1
(t) < 1 for each t ∈ [0,µ?

ε1
].

Set

L0 = ε1 γ and Rε1
=

µ?
ε1

γ
. (5.3.19)

Hence, we arrived at the following result.

Theorem 5.3.8. Suppose that

(a) There exists x? ∈U(x0,R) such that F(x?) = 0 and F ′(x?)−1 ∈ L(Y ,X ).

(b) Operator F satisfies the center L0-Lipschitz condition at x? on U(x?,
1

ε1

) for ε1 satis-

fying (5.3.17) and the γ-Lipschitz condition at x? on U(x?,
1

γ
).

Then, if x0 ∈ U(x?,Rε1
), sequence {xn} generated by Newton’s method is well defined,

remains in U(x?,Rε1) for each n = 0,1, · · · and converges to x?. Moreover, the following

estimate holds

‖ xn+1−xn ‖≤
γ(2− γ ‖ xn −x? ‖) ‖ xn −x? ‖2

(1− γ ‖ xn −x? ‖)2 (1−ε1 ‖ xn −x? ‖) . (5.3.20)

5.4. Numerical Examples

In this section we provide numerical examples.

Example 5.4.1. (a) Consider γ = 1.8, γ0 = .44 and η = .1. Using (5.2.10) and (5.2.11),

we get that

γ0

γ
= .2444444444≤ 1− 1√

2
= .2928932190,

1

γ
= .5555555556,
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Table 5.4.1. Comparison Table

n sn tn sn+1 − sn tn+1− tn

1 .1 .1 .0051130691 .0059006211

2 .1051130691 .1059006211 .0000169735 .0000230132

3 .1051300426 .1059236343 2e-10 4e-10

4 .1051300428 .1059236347 0 0

5 ∼ ∼ ∼ ∼

s2 = .1059236776, s3 = .1060526606, s4 = .1060527234

and

sn = s4 = .1060527234 for each n = 5,6,7, · · · .
That is sn < 1/γ for each n = 1,2, · · · and condition (5.2.11) holds. Hence, our

Theorem 5.2.8 is applicable. We have that

α = .18 > 3−2
√

2 = .171572876.

Hence the older convergence criteria in [32] do not hold.

(b) Consider now γ = .5, γ0 = .44 and η = .1. Using (5.2.10) and (5.2.11), we get that

γ0

γ
= .88 > 1− 1√

2
= .2928932190, (1− 1√

2
)

1

γ0

= .665666406,

s2 = .1051130691, s3 = .1051300426, s4 = .1051300428

and

sn = s4 = .1051300428 for each n = 5,6, · · · .
That is sn < (1− (1/

√
2))/γ0 for each n = 1,2, · · · and condition (5.2.11) holds.

Hence, our Theorem 5.2.8 is applicable. we also have that

α = .05 ≤ .171572876.

Hence the convergence criterion in [31] is also satisfied. We can now compare our

results of Theorem 5.2.8 (see also sequence {sn} given by (5.2.10)) to ones given in

[31, 32] (see also {tn} given by (5.1.10)). Table 5.4.1 shows that our error bounds

using sequence {sn} are tighter than those given in [32].

Example 5.4.2. Let function h : R −→ R be defined by

h(x) =

{
0 i f x ≤ 0

x i f x ≥ 0.

Define function F by

F(x) =





ϖ−x+
1

18
x3 +

x2

1−x
i f x ≤ 1

2

ϖ− 71

144
+2x2 i f x ≥ 1

2
,

(5.4.1)



92 Ioannis K. Argyros and Á. Alberto Magreñán

where ϖ > 0 is a constant. Then, we have that

F ′(x) =





−2+
1

(1−x)2
+

x2

6
i f x ≤ 1

2

4x i f x ≥ 1

2

(5.4.2)

and

F ′′(x) =





2

(1−x)2
+

x

3
i f x ≤ 1

2

4 i f x ≥ 1

2
.

(5.4.3)

We shall first show that F ′ satisfies the L-Lipschitz condition (5.2.2) on U(0,1), where

L(u) =
2

(1−u)3
+

1

6
f or each u ∈ [0,1) (5.4.4)

and the L0-center-Lipschitz condition (5.2.3) on U(0,1), where

L0(u) =
2

(1−u)3
+

1

12
f or each u ∈ [0,1). (5.4.5)

It follows from (5.4.3) that

L(u) < L(v) f or each 0 ≤ u < v < 1 (5.4.6)

and

0 < F ′′(u) < F ′′(|u|) < L(|u|) f or each
1

2
6= u < 1. (5.4.7)

Let x,y ∈U(0,1) with |y|+ |x−y| < 1. Then, it follows from (5.4.6) and (5.4.7) that

|F ′(x)−F ′(y)| ≤ |x−y|
Z 1

0
F ′′(y+ t (x−y))dt

≤ |x−y|
Z 1

0
L(|y|+ t |x−y|)dt.

(5.4.8)

Hence, F ′ satisfies the L-Lipschitz condition (5.2.2) on U(0,1). Similarily, using (5.4.2)

and (5.4.5), we deduce that F ′ satisfies the L0-center-Lipschitz condition (5.2.3) on U(0,1).

Notice that

L0(u) < L(u) f or each u ∈ [0,1). (5.4.9)

Table 5.4.2 show that our error bounds sn+1− sn are finer than tn+1− tn.

Example 5.4.3. Let X = Y = R2, x0 = (1,0), D = U(x0,1−κ) for κ ∈ (0,1). Let us define

function F on D as follows

F(x) = (ζ3
1 −ζ2 −κ,ζ1 +3ζ2 − 3

√
κ) with x = (ζ1,ζ2). (5.4.10)

Using (5.4.10) we see that the γ-Lipschitz condition is satisfied for γ = 2−κ. We also have

that η = (1−κ)/3.
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Table 5.4.2. Comparison Table

n sn tn sn+1 − sn tn+1− tn

0 0 0 .05 .05

1 .05 .05 .00308148876 .00321390287

2 .05308148876 .05321390287 .00001307052 .00001479064

3 .05309455928 .05322869351

Table 5.4.3. Comparison Table

n sn tn sn+1 − sn tn+1− tn

0 0.000000e+00 0.000000e+00 1.000000e−01 1.000000e−01

1 1.000000e−01 1.000000e−01 1.52215005e−02 2.201246e−02

2 1.152215005e−01 1.220125e−01 6.507434e−04 1.683820e−03

3 1.158722439e−01 1.236963e−01 1.2499e−06 1.069600e−05

4 1.158734938e−01 1.237070e−01 0 4.338887e−10

5 ∼ 1.237070e−01 ∼ 7.140132e−19

6 ∼ 1.237070e−01 ∼ 1.933579e−36

7 ∼ 1.237070e−01 ∼ 1.417992e−71

8 ∼ 1.237070e−01 ∼ 7.626002e−142

9 ∼ 1.237070e−01 ∼ 2.205685e−282

Case I. Let κ = .6255. Then we notice that (5.1.5) is not satisfied since α =
.1715834166 > 3−2

√
2 = .171572875. Hence there is no guarantee that New-

ton’s method starting from x0 will converge to x? = ( 3
√

κ,0) = (.85521599,0) (cf.

[14, 19, 26, 27, 30, 31, 32]). However, our results can apply. Indeed using the

definition of Lipschitz and center-Lipschitz conditions we have that L0 = 3−κ and

L = 4
√

2(2−κ). Hence, (5.2.31) is satisfied since h = L1 η = .3396683409 < .5. We

conclude that Theorem 5.2.12 is applicable and iteration {sn} converges to x?.

Case II. Let κ = .7. It can be seen that the condition (5.1.5) holds since α = .13 ≤
3− 2

√
2. We also obtain that h = .2626128133 < .5. We get in turn that 1/γ =

0.7692307,

(
1− 1√

2

)
1

γ0

= 0.2899932 and 1− 1√
2

= .29289321 < 0.776923.

Then condition (5.2.31) also holds. Using Theorem 5.2.8, the γ0-center-Lipschitz

condition is satisfied if

∥∥F ′(x0)
−1
(
F ′(x)−F ′(x0)

)∥∥<
1

(1− γ0‖x−x0‖)2
−1,

which is certainly satisfied for say γ0 = 1.01. Note that γ0 < 1.3 = γ. Table 5.4.3

compare the sequences {sn}, {tn} and the error bounds tn+1− tn, sn+1− sn. We also

observe that {sn} is finer majorizing sequence than {tn}.
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Conclusion

A convergence analysis of Newton’s method is provided for approximating a locally unique

solution of nonlinear equation in a Banach space setting. Using Smale’s α-theory and

the center-Lipschitz condition, we presented a new convergence analysis with larger con-

vergence domain and weaker sufficient convergence conditions. Moreover, these ad-

vantages are obtained under the same computational cost as in earlier studies such as

[14, 19, 27, 30, 31, 32]. Numerical examples validating the theoretical results are also

provided in this chapter.
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Chapter 6

Newton-Type Methods on

Riemannian Manifolds under

Kantorovich-Type Conditions

6.1. Introduction

Let us suppose that F is an operator defined on an open convex subset Ω of a Banach space

E. Let us denote by DF (xn) the first Fréchet derivatives of F at xn.

Given an integer m and an initial point x0 ∈ E, we move from xn to xn+1 through an

intermediate sequence
{

yi
n

}m

i=0
, y0

n = xn, which is a generalization of Newton (m = 1) and

simplified Newton (m = ∞) methods





y1
n = y0

n −DF
(
y0

n

)−1
F
(
y0

n

)

y2
n = y1

n −DF
(
y0

n

)−1
F
(
y1

n

)

...

ym
n = xn+1 = ym−1

n −DF
(
y0

n

)−1
F

(
y
(m−1)
n

)
.

This family of methods was introduced by E. Shamanskii [43]. Under appropriate con-

ditions, these iterative methods converge to a root x∗ of the equation F (x) = 0. More-

over, if x0 is sufficiently near x∗ the method has order of convergence at least m + 1. See

[33, 38, 43, 46]. In particular, Notice that in [38] a modification of DF(xn) at each sub-

step. In [39, 40, 41], Parida and Gupta provided some recurrence relations to establish

a convergence analysis for a third order Newton-type methods under Lipschitz or Hölder

conditions on the second Fréchet derivative. A modification of the approach used in [39]

and some applications are presented by Chun et al. in [19]. Recently, Argyros and Ren

[17] expanded the applicability of Halley’s method using a center-Lipschitz condition on

the second Fréchet derivative instead of Lipschitz’s condition.

On the other hand, in the last years, attention has been paid in studying Newton’s

method on manifolds, since there are many numerical problems posed on manifolds that

arise naturally in many contexts. Some examples include eigenvalue problems, minimiza-

tion problems with orthogonality constraints, optimization problems with equality con-
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straints, invariant subspace computations. See for instance [1, 2, 3, 7, 15, 20, 21, 27, 29, 35,

36, 48, 49]. For these problems, one has to compute solutions of equations or to find zeros

of a vector field on Riemannian manifolds.

The study about convergence matter of iterative methods is usually centered on two

types: semilocal and local convergence analysis. The semilocal convergence matter is,

based on the information around an initial point, to give criteria ensuring the convergence

of iterative methods; while the local one is, based on the information around a solution,

to find estimates of the radii of convergence balls. There is a plethora of studies on the

weakness and/or extension of the hypothesis made on the underlying operators; see for

example [4, 5, 6, 12, 14, 32, 34, 48, 49].

The semilocal convergence analysis of Newton’s method is based on celebrated Kan-

torovich theorem. This theorem is a fundamental result in numerical analysis, e.g., for

providing an iterative method for computing zeros of polynomials or of systems of non-

linear equations. Moreover, this theorem is a very usefull result in nonlinear functional

analysis, e.g., for establishing that a nonlinear equation in an abstract space has a solution.

Let us recall Kantorovich’s theorem in a Banach space setting.

Theorem 6.1.1. [32] Let E be a Banach space, Ω ⊆ E be an open convex set, F : Ω −→ Ω
be a continuous operator, such that, F ∈ C1 and DF is Lipschitz on Ω

‖DF (x)−DF (y)‖ ≤ l ‖x−y‖ , for all x,y ∈ Ω, l > 0.

Suppose that for some x0 ∈ Ω, DF (x0) is invertible and that for some a > 0 and b ≥ 0 :

∥∥∥DF (x0)
−1
∥∥∥≤ a,

∥∥∥DF (x0)
−1

F (x0)
∥∥∥≤ b,

h = abl ≤ 1

2
(6.1.1)

and

B(x0, t∗) ⊆ Ω where t∗ =
1

al

(
1−

√
1−2h

)
.

If

vk = −DF (xk)
−1

F (xk) ,
xk+1 = xk +vk.

Then {xk}k∈N
⊆ B(x0, t∗) and xk −→ p∗, which is the unique zero of F in B [x0, t∗] . Further-

more , if h < 1
2 and B(x0, r) ⊆ Ω with

t∗ < r ≤ t∗∗ =
1

al

(
1+

√
1−2h

)
,

then p∗ is also the unique zero of F in B(x0, r) . Also, the error bound is:

‖xk −x∗‖ ≤ (2h)2k b

h
; k = 1,2, . . .
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Although the concepts will be defined later on, to extend the method on Riemannian

manifolds, preliminarily we will say that the derivative of F at xn is replaced by the covariant

derivative of X at pn :

∇(.)X (pn) : Tpn
M −→ Tpn

M

v −→ ∇Y X ,

where Y is a vector field satisfying Y (p) = v. We adopt the notation DX (p)v = ∇yX (p) ;

hence DX (p) is a linear mapping of TpM into TpM. So, in this new context

−F ′ (xn)
−1

F (xn)

is written as

−DX (pn)
−1

X (pn)

or

−
(
∇X(pn)X

)−1
(pn) .

Now we can write Kantorovich’s theorem in the new context. A proof of this theorem can

be found in [27]. We will say that a singularity of a vector field X , is a point p ∈ M for

which X (p) = 0.

Theorem 6.1.2. [27] (Kantorovich’s theorem on Riemannian manifold) Let M be a Rie-

mannian manifold, Ω ⊆ M be an open convex set, X ∈ χ(M) and DX ∈ Lipl (Ω). Suppose

that for some p0 ∈ Ω, DX (p0) is invertible and that for some a > 0 and b ≥ 0 :

∥∥∥DX (p0)
−1
∥∥∥ ≤ a

(∥∥∥
(
∇(.)X (po)

)−1
∥∥∥≤ a

)

∥∥∥DX (p0)
−1

X (p0)
∥∥∥≤ b

(∥∥∥
(
∇X(po)X (po)

)−1
∥∥∥≤ b

)

h = abl ≤ 1

2
(6.1.2)

B(p0, t∗) ⊆ Ω where t∗ =
1

al

(
1−

√
1−2h

)
.

If

vk = −DX (pk)
−1

X (pk) ,

pk+1 = exppk
(vk) ,

then {pk}k∈N
⊆ B(p0, t∗) and pk −→ p∗ which is the unique singularity of X in B [p0, t∗],

where exppk
is defined in (6.2.6). Furthermore , if h < 1

2 and B(p0, r)⊆ Ω with

t∗ < r ≤ t∗∗ =
1

al

(
1+

√
1−2h

)
,

then p∗ is also the unique singularity of F in B(p0, r) . The error bound is:

d (pk, p∗) ≤ b
h
(2h)2k

; k = 1,2, . . . (6.1.3)
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The Kantorovich hypothesis (6.1.2) in Theorem 6.1.2 is only a sufficient convergence

criterion for Newton method as well as the modified Newton’s method. There are numeri-

cal examples in the literature showing that Newton’s method converges but the Kantorovich

hypothesis is not satisfied (see [6, 9, 12, 14, 32] and the references therein). In the present

chapter we show how to expand the convergence domain of Newton’s method without addi-

tional hypotheses. We achieve this goal by introducing more precise majorizing sequences

for Newton’s method than in the earlier studies in the field. Notice that if DF is Lipschitz

on Ω, there exists a constant l0 > 0, such that DF is center-Lipschitz on Ω

‖DF (x)−DF (x0)‖ ≤ l0‖x−x0‖ , for all x ∈ Ω, l0 > 0.

Clearly,

l0 ≤ l (6.1.4)

holds in general and l/l0 can be arbitrarily large [6, 12, 14]. In particular, we show that in

the case of the modified Newton’s method, condition (3) of Theorem 6.1.2 can be replaced

by

h0 = abl0 ≤
1

2
, (6.1.5)

whereas in the case of Newton’s method, condition (3) of Theorem 6.1.2 can be replaced

by

h1 =
ab

8
(l +4 l0 +

√
l2 +8 l0 l) ≤ 1

2
, (6.1.6)

or by

h2 =
ab

8
(4 l0 +

√
l l0 +8 l2

0 +
√

l0 l) ≤ 1

2
. (6.1.7)

Notice that

h ≤ 1

2
=⇒ h1 ≤

1

2
=⇒ h2 ≤

1

2
=⇒ h0 ≤

1

2
(6.1.8)

but not necessarily vice versa unless if l0 = l. Moreover, we have that

h1

h
−→ 1

4
,

h2

h1

−→ 0,
h2

h
−→ 0 and

h0

h
−→ 0 as

l0

l
−→ 0. (6.1.9)

The preceding estimates show by how many times (at most) the applicability of the modified

Newton’s method or Newton’s method can be extended. Moreover, we show that under the

new convergence conditions, the error estimates on the distances d(pn, pn−1), d(pn, p∗)
can be tighter and the information on the location of the solution at least as precise as in

Theorem 6.1.2.

The chapter in organized as follows: Section 6.2. contains some definitions and fun-

damental properties of Riemannian manifolds. The convergence of simplified Newton’s

method and the order of convergence using normal coordinates are given in Sections 6.3.

and 6.4.. Family of high order Newton-type methods, precise majorizing sequences and the

corresponding convergence results are provided in Sections 6.5. and 6.6..



Newton-Type Methods on Riemannian Manifolds 103

6.2. Basic Definitions and Preliminary Results

In this section, we introduce some definitions and fundamental properties of Riemannian

manifolds in order to make this chapter as selfcontained as possible. These definitions and

properties can be found in [20, 21, 22, 28, 32, 35, 37, 38, 47]. The preceding references are

recommended to the interested reader for further study.

Definition 6.2.1. [28, 37, 38, 47] A differentiable manifold of dimension m is a set M and

a family of injective mappings xα : Uα ⊂R
m −→ M of open sets Uα of R

m into M such that:

(i)
[

α

xα (Uα) = M.

(ii) for any pair α,β with xα (Uα)∩xβ

(
Uβ

)
= W 6= /0, the sets x−1

α (W) and x−1
β (W) are

open sets in R
m and the mappings x−1

β
◦ xα are differentiable.

(iii) The family {(Uα,xα)} is maximal relative to the conditions (i) and (ii).

The pair (Uα,xα) (or the mapping xα) with p ∈ xα (Uα) is called a parametrization

(or system of coordinates) of M at p; xα (Uα) is then called neighborhood at p and(
xα (Uα) ,x−1

α

)
is called a coordinate chart. A family {(Uα,xα)} satisfying (i) and (ii) is

called a differentiable structure on M.

Let M be a real manifold, p ∈ M and denote by TpM the tangent space at p to M. Let

x : U ⊂ Rm −→ M be a system of coordinates around p whit x(x1,x2, · · · ,xm) = p and its

associated basis {
∂

∂x1

∣∣∣∣
p

,
∂

∂x2

∣∣∣∣
p

, · · · , ∂

∂xm

∣∣∣∣
p

}

in TpM. The tangent bundle T M is defined as

T M = {(p,v) ; p ∈ M and v ∈ TpM} =
[

p∈M

TpM

and provides a differentiable structure of dimension 2m [22]. Next, we define the concept

of Riemannian metric:

Definition 6.2.2. A Riemannian metric on a differentiable manifold M is a correspondence

which associates to each point p of M an inner product 〈., .〉p (that is, a symmetric, bilinear,

positive-definite form) on the tangent space TpM, which varies differentiabily in the follow-

ing sense: x : U ⊂Rm −→ M is a system of coordinates around p with x(x1,x2, . . . ,xm) = p,

then

gi j (x1,x2, · · · ,xm) :=

〈
∂

∂xi

∣∣∣∣
p

,
∂

∂x j

∣∣∣∣
p

〉

p

=

〈
dx−1

(
∂

∂xi

∣∣∣∣
p

)
,dx−1

(
∂

∂x j

∣∣∣∣
p

)〉
,

in which dx−1 is the tangent map of x−1 and is a differentiable operator on U for each

i, j = 1,2, ..,n. The operators gi j are called the local representatives of the Riemannian

metric.
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The inner product 〈., .〉p induces in a natural way the norm ||.||p . The subscript p is

usually deleted whenever there is not possibility of confusion.

If p and q are two elements of the manifold M and c : [0,1]−→ M is a piecewise smooth

curve connecting p and q, then the arc length of c is defined by

l (c) =
Z 1

0

∣∣∣∣c′ (t)
∣∣∣∣dt (6.2.1)

=

Z 1

0

〈
dc

dt
,

dc

dt

〉1/2

dt,

and the Riemannian distance from p to q by

d (p,q) = inf
c

l (c) . (6.2.2)

Definition 6.2.3. Let χ(M) be the set of all vector fields of class C∞ on M and D (M) the

ring of real-valued operators of class C∞ defined on M, that is:

χ(M) = C∞
(
M,T(.)M

)
,

D (M) = C∞ (M,R) .

An affine connection ∇ on M is a mapping

∇ : χ(M)×χ (M)−→ χ(M)
(X ,Y ) 7−→ ∇XY

(6.2.3)

which satisfies the following properties:

i) ∇ f X+gY Z = f ∇X Z +g∇Y Z.
ii) ∇X (Y +Z) = ∇XY +∇XZ.

iii) ∇X ( fY ) = f ∇XY +X ( f )Y,

where X , Y, Z ∈ χ(M) and f ,g ∈ D (M) .

Definition 6.2.4. Let X be a C1 vector field on M, the covariant derivative of X determined

by the Levi-Civita connection ∇ defines on each p ∈ M a linear application of TpM itself

DX (p) : TpM −→ TpM

v 7−→ DX (p) (v) = ∇Y X (p)
(6.2.4)

where Y is a vector field satisfying Y (p) = v. The value DX (p) (v) depends only on the

tangent vector v = Y (p) since ∇ is linear in Y , thus we can write

DX (p) (v) = ∇vX (p) .

Let us consider a curve c : [a,b]−→ M and a vector field X along c, i.e. X (p) ∈ Tc′(t)M

where c(t) = p for all t. We say that a vector field X is parallel along c (with respect to ∇) if

DX (p) (c′ (t)) = 0, the affine connection is compatible with the metric 〈., .〉 , when for any
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smooth curve c and any pair of parallel vector fields P and P′ along c, we have that 〈P,P′〉
is constant or equivalently

d

dt
〈X ,Y〉 =

〈
∇c′(t)X ,Y

〉
+
〈

X ,∇c′(t)Y
〉
,

where X and Y are vector fields along the differentiable curve c : I −→ M (see [22], [45]).

We say that ∇ is symmetric if

∇XY −∇Y X = [X ,Y ] for all X ,Y ∈ χ(M) .

The theorem of Levi-Civita (see [45]), establishes that there exists a unique symmetric

affine connection ∇ on M compatible with the metric. This connection is called connection

of Levi-Civita.

Definition 6.2.5. [28, 37, 38, 47] A parameterized curve γ : I −→ M is a geodesic at t0 ∈ I

if ∇γ′(t)γ
′ (t) = 0 in the point t0. If γ is a geodesic at t, for all t ∈ I, we say that γ is a

geodesic. If [a,b]⊆ I, the restriction of γ to [a,b] is called a geodesic segment joining γ (a)
to γ(b).

Some times, by abuse of the language, we refer to the image γ (I), of a geodesic γ, as a

geodesic. A basic property of a geodesic is that, γ′ (t) is parallel along of γ (t) ; this implies

that ||γ′ (t)|| is constant.

Let B(p, r) and B [p, r] be respectively the open geodesic and the closed geodesic ball

with center p and radius r, that is:

B(p, r) = {q ∈ M : d (p,q) < r}
B [p, r] = {q ∈ M : d (p,q)≤ r} .

We define an open set U of M to be convex if given p,q ∈U there exists a unique geodesic

in U joining p to q, and such that the length of the geodesic is d (p,q).

The Hopf and Rinow theorem (see [22]) gives necessary and sufficient conditions for

M to be a complete metric space. In particular, if M is a complete metric space, then for

any q ∈ M there exists a geodesic γ, called minimizing geodesic, joining p to q with

l (γ) = d (p,q) , (6.2.5)

also if v ∈ TpM, there exists a unique minimizing geodesic γ such that γ (0) = p and γ′ (0) =
v. The point γ (1) is called the image of v by the exponential map at p, that is, there exist a

well defined map

expp : TpM −→ M (6.2.6)

such that

expp (v) = γ (1) ,

and for any t ∈ [0,1]

γ (t) = expp (tv) .

It can be shown that expp defines a diffeomorphism of a neighborhood Û of the origin 0p ∈
TpM onto a neighborhood U of p ∈ M, called normal neighborhood of p, (see [22]).
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Let p ∈ M and U a normal neighborhood of p. Let us consider an orthonormal

basis {ei}m
i=1 of TpM. This basis gives the isomorphism f : R

m −→ TpM defined by

f (u1, · · · ,un) = ∑m
i=1 uiei. If q = expp (∑m

i=1 uiei) , we say that (u1, . . . ,un) are normal coor-

dinates of q in the normal neighborhood U of p and the coordinate chart is the composition

ϕ := expp ◦ f : R
m −→U.

One of the most important properties of the normal coordinates is that the geodesies passing

through p are given by linear equations, (see [44]).

The exponential map has many important properties [22], [44]. When the exponential

map is defined for each value of the parameter t ∈ R we will say that the Riemannian man-

ifold M is geodesically complete (or simply complete). The Hopf and Rinow theorem (see

[22]), also establishes that the property of the Riemannian manifold of being geodesically

complete is equivalent to being complete as a metric space.

Definition 6.2.6. [28, 37, 38, 47] Let c be a piecewise smooth curve. For any pair a,b∈ R,

we define the parallel transport along c which is denoted by Pc as

Pc,a,b : Tc(a)M −→ Tc(b)M

v 7−→ V (c(b)) ,
(6.2.7)

where V is the unique vector field along c such that ∇c′(t)V = 0 and V (c(a)) = v.

It is easy to show that Pc,a,b is linear and one-one, thus Pc,b,a is an isomorphism between

every two tangent spaces Tc(a)M and Tc(b)M. Its inverse is the parallel translation along

the reversed portion of c from V (c(b)) to V (c(a)) , actually Pc,a,b is a isometry between

Tc(a)M and Tc(b)M. Moreover, for a positive integer i and for all (v1,v2, . . .,vi) ∈
(
Tc(a)M

)i
,

we define Pi
c as

Pi
c,a,b :

(
Tc(a)M

)i −→
(
Tc(b)M

)i
,

where

Pi
c,a,b (v1,v2, . . . ,vi) = (Pc,a,b (v1) ,Pc,a,b (v2) , . . . ,Pc,a,b (vi)) .

The parallel transport has the important properties:

Pc,a,b ◦Pc,b,d = Pc,a,d,

P−1
c,b,a = Pc,a,b.

(6.2.8)

Next, we generalize the concept of covariant derivative. We observe that

DX : Ck (T M) −→ Ck−1 (T M)

(v, .) 7−→ DX (Y) = ∇Y X ,
(6.2.9)

where T M is the tangent bundle. Similar to the higher order Fréchet derivative, see [18]. We

define the higher order covariant derivatives, see [45], as the multilinear map or j-tensor:

D jX :
(
Ck (T M)

) j −→ Ck− j (T M)
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given by

D jX (Y1,Y2, . . . ,Yj−1,Y) = ∇Y D j−1 (X (Y1,Y2, . . . ,Yj−1)) (6.2.10)

−
j−1

∑
i=1

D j−1X (Y1,Y2, . . .,∇Y Yi, . . .,Yj−1, )

for each Y1,Y2, . . . ,Yj−1 ∈Ck (T M) . In the case of j = 2 we have

D2X : Ck (T M)×Ck (T M) −→ Ck−2 (T M)

and

D2X (Y1,Y) = ∇Y DX (Y1)−DX (∇YY1) (6.2.11)

= ∇Y (∇Y1
X)−∇∇YY1

X .

The multilinearity refers to the structure of Ck (M)-module, such that, the value of

D jX (Y1,Y2, . . . ,Yj−1,Y)

at p ∈ M only depends on the j-tuple of tangent vectors

(v1,v2, . . .,v j) = (Y1 (p) ,Y2 (p) , . . .,Yj−1 (p) ,Y (p)) ∈ (TpM) j .

Therefore, for any p ∈ M, we can define the map

D jX (p) : (TpM) j −→ TpM

by

D jX (p) (v1,v2, . . . ,v j) = D jX (Y1,Y2, . . . ,Yj−1,Y) (p) . (6.2.12)

Definition 6.2.7. [28, 37, 38, 47] Let M be a Riemannian manifold, Ω ⊆ M an open convex

set and X ∈ χ(M) . The covariant derivative DX = ∇(.)X is Lipschitz with constant l > 0,

if for any geodesic γ and a,b ∈ R so that γ [a,b]⊆ Ω, it holds that:

∥∥Pγ,b,aDX (γ (b))Pγ,a,b −DX (γ (a))
∥∥ ≤ l

Z b

a

∥∥γ′ (t)
∥∥dt. (6.2.13)

We will write DX ∈ Lipl (Ω) .

Note that Pγ,b,aDX (γ (b))Pγ,b,a and DX (γ(a)) are both operators defined in the same

tangent plane Tγ(a)M. If M is an Euclidean space, the above definition coincides with the

usual Lipschitz definition for the operator DF : M −→ M.

Proposition 6.2.8. [28, 37, 38, 47] Let c be a curve in M and X be a C1 vector field on M,

then the covariant derivative of X in the direction of c′ (s) is

DX (c(s))c′ (s) = ∇c′(s)Xc(s) (6.2.14)

= lim
h→0

1

h
(Pc,s+h,sX (c(s+h))−X (c(s))) .
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Note that if M = R
n the previous proposition agrees with the definition of classic direc-

tional derivative in R
n; (see [45]).

It is also possible to obtain a version of the fundamental theorem of calculus for mani-

folds:

Theorem 6.2.9. [27] Let c be a geodesic in M and X be a C1 vector field on M, then

Pc,t,0X (c(t)) = X (c(0))+
Z t

0
Pc,s,0

(
DX (c(s))c′ (s)

)
ds. (6.2.15)

Theorem 6.2.10. Let c be a geodesic in M and X be a C2 vector field on M, then

Pc,t,0DX (c(t))c′ (t) = DX (c(0))c′ (0)+
Z t

0
Pc,s,0

(
D2X (c(s))

(
c′ (s) ,c′ (s)

))
ds.

(6.2.16)

Proof. Let us consider the vector field along of the geodesic c(s)

Y (c(s)) = DX (c(s))c′ (s) .

By the previous theorem

Pc,t,0Y (c(t)) = Y (c(0))+

Z t

0
Pc,s,0

(
DY (c(s))c′ (s)

)
ds

hence

Pc,t,0DX (c(t))c′ (t) = DX (c(0))c′ (0)+

Z t

0
Pc,s,0

(
D
(
DX (c(s))c′ (s)

)
c′ (s)

)
ds

by (6.2.11)

D2X (c(s))
(
c′ (s) ,c′ (s)

)
= ∇c′(s)D

(
X (c(s))

(
c′ (s)

))
−DX (c(s))

(
∇c′(s)c

′ (s)
)

D
(
DX (c(s))c′ (s)

)
c′ (s)−DX (c(s))

(
∇c′(s)c

′ (s)
)
,

since c(s) is a geodesic, we have ∇c′(s)c
′ (s) = 0, hence

D2X (c(s))
(
c′ (s) ,c′ (s)

)
= D

(
DX (c(s))c′ (s)

)
c′ (s) .

Therefore

Pc,t,0DX (c(t))c′ (t) = DX (c(0))c′ (0)+

Z t

0
D2X (c(s))

(
c′ (s) ,c′ (s)

)
ds.

In a similar way, using an induction strategy, we can prove that

Pc,t,0DnX (c(s))Pn
c,0,t −DnX (c(0)) =

Z s

0
Pc,t,0

(
DnX (c(t))Pn

c,0,t

(
c′ (0) , . . .,c′ (0)

))
dt

(6.2.17)
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Theorem 6.2.11. Let c be a geodesic in M, [0,1]⊆ Dom(c) and X be a C2 vector field on

M, then

Pc,1,0X (c(1)) = X (c(0))+DX (c(0))c′ (0)+
Z 1

0
(1− t)Pc,s,0D2X (c(t))

(
c′ (t) ,c′ (t)

)
dt.

(6.2.18)

Proof. Consider the curve

f (s) = Pc,s,0X (c(s))

in Tc(0)M. We have that

f (n) (s) = Pc,s,0D(n)X (c(s))
(
c′ (s) ,c′ (s) , · · · ,c′ (s)

)
︸ ︷︷ ︸

n− times

(6.2.19)

Then

f ′′ (s) = Pc,s,0D2X (c(s))
(
c′ (s) ,c′ (s)

)
,

and from Taylor’s theorem

f (1) = f (0)+ f ′ (0)(1−0)+

Z 1

0
(1− t) f ′′ (t)dt.

Therefore

Pc,1,0X (c(1)) = X (c(0))+DX (c(0))c′ (0)+
Z 1

0
(1− t)Pc,t,0D2X (c(t))

(
c′ (t) ,c′ (t)

)
dt.

Let us recall that if A : TpM −→ TpM, we can define ‖A‖ =

sup{‖Av‖ : v ∈ TpM, ‖v‖ = 1} .
The following is an important lemma, that allows to know when an operator is invertible

and also allows to give on estimate for its inverse.

Lemma 6.2.12. (Banach’s Lemma [32]) Let A be an invertible bounded linear operator in

a Banach space E and B be an bounded linear operator B in E, if

∥∥A−1B− I
∥∥ < 1

then B−1 exists and

∥∥B−1
∥∥≤

∥∥A−1
∥∥

1−‖A−1B− I‖

≤
∥∥A−1

∥∥
1−‖A−1‖‖B−A‖ .

Moreover,

∥∥B−1A
∥∥≤ 1

1−‖A−1B− I‖

≤ 1

1−‖A−1‖‖B−A‖ .
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6.3. Simplified Newton’s Method on Riemannian Manifolds

(m = ∞)

Next we will prove the semilocal convergence of the simplified Newton’s method in Rie-

mannian manifolds (fixing DX (p0)
−1

in each iteration). Our main result is:

Theorem 6.3.1. Let M be a Riemannian manifold, Ω ⊆ M be an open convex set, X ∈
χ(M) , and DX ∈ Lipl (Ω). Suppose that for some p0 ∈ Ω, DX (p0) is invertible and that

for some a > 0 and b ≥ 0 :

(1)
∥∥∥DX (p0)

−1
∥∥∥≤ a,

(2)
∥∥∥DX (p0)

−1
X (p0)

∥∥∥≤ b,

(3) h = abl ≤ 1
2
,

(4) B(p0, t∗) ⊆ Ω where t∗ = 1
a l

(
1−

√
1−2h

)
.

If

vk = −Pσk ,0,1DX (p0)
−1

Pσk,1,0X (pk) ,

pk+1 = exppk
(vk) ,

(6.3.1)

where {σk : [0,1]−→ M}k∈N
is the minimizing geodesic family connecting p0, pk, then

{pk}k∈N
⊆ B(p0, t∗) and pk −→ p∗ which is the only one singularity of X in B [p0, t∗] .

Furthermore, if h < 1
2

and B(p0, r)⊆ Ω with

t∗ < r ≤ t∗∗ =
1

al

(
1+

√
1−2h

)
,

then p∗ is also the only singularity of F in B(p0, r) . The error bound is:

d (pk, p∗) ≤ b
h

(
1−

√
1−2h

)k+1
; k = 1,2, . . . (6.3.2)

First, we establish some results that are of primary relevance in this proof.

Lemma 6.3.2. Let M be a Riemannian manifold, Ω ⊆ M an open convex set, X ∈ χ(M) and

DX ∈ Lipl (Ω) . Take p ∈ B(p0, r)⊆ Ω, v ∈ TpM, σ : [0,1]−→ M be a minimizing geodesic

connecting p0, p and

γ (t) = expp (tv) .

Then

Pγ,t,0X (γ(t)) = X (p)+Pσ,0,1tDX (p0)Pσ,1,0v+R(t)

with

‖R(t)‖ ≤ l

( t

2
‖v‖+d (p0, p)

)
t ‖v‖ .

Proof. From Theorem 6.2.9, it follows that

Pγ,t,0X (γ (t))−X (γ(0)) =

Z t

0
Pγ,s,0

(
DX (γ (s))γ′ (s)

)
ds,
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since γ is a minimizing geodesic, then γ′ (t) is parallel and γ′ (s) = Pγ,0,sγ
′ (0) . Moreover

γ′ (0) = v then

Pγ,t,0X (γ (t))−X (p) =

Z t

0
Pγ,s,0

(
DX (γ(s))Pγ,0,sv

)
ds.

Thus
Pγ,t,0X (γ (t))−X (p)−Pσ,0,1tDX (p0)Pσ,1,0v

=
R t

0 Pγ,s,0

(
DX (γ (s))Pγ,0,sv

)
ds−Pσ,0,1DX (p0)Pσ,1,0v

=
R t

0

(
Pγ,s,0DX (γ (s))Pγ,0,sv−Pσ,0,1DX (p0)Pσ,1,0v

)
ds,

letting

R(t) =

Z t

0

(
Pγ,s,oDX (γ (s))Pγ,o,sv−Pσ,0,1DX (p0)Pσ,1,0v

)
ds,

and since DX ∈ Lipl (Ω) , we obtain

‖R(t)‖ ≤
Z t

0

∥∥(Pγ,s,oDX (γ(s))Pγ,o,s −DX (p)+DX (p)−Pσ,0,1DX (p0)Pσ,1,0
)∥∥‖v‖ds

≤
Z t

0

(∥∥Pγ,s,oDX (γ(s))Pγ,o,s −DX (p)
∥∥+

∥∥DX (p)−Pσ,0,1DX (p0)Pσ,1,0

∥∥)‖v‖ds

=

Z 1

0

(∥∥Pγ,s,oDX (γ(s))Pγ,o,s −DX (γ (0))
∥∥+

∥∥DX (σ (1))−Pσ,0,1DX (σ (0))Pσ,1,0

∥∥)‖v‖ds

≤ l

Z t

0

(
Z s

0

∥∥γ′ (τ)
∥∥dτ+d (p0, p)

)
‖v‖ds

= l

Z t

0

(
Z s

0

∥∥γ′ (0)
∥∥dτ +d (p0, p)

)
‖v‖ds

= l

Z t

0

(
s
∥∥γ′ (0)

∥∥+d (p0, p)
)
‖v‖ds

= l

(
t2

2
‖v‖+ td (p0, p)

)
‖v‖ .

Therefore,

‖R(t)‖ ≤ l
( t

2
‖v‖+d (p0, p)

)
t ‖v‖ .

Corollary 6.3.3. Let M be a Riemannian manifold, Ω ⊆ M be an open convex set, X ∈
χ(M), DX ∈ Lipl (Ω) . Take p ∈ Ω , v ∈ TpM and let be

γ (t) = expp (tv) .

If γ[0, t)⊆ Ω and Pσ,0,1DX (p0)Pσ,1,0v = −X (p) , then

∥∥Pγ,1,0X (γ (1))
∥∥ ≤ l

(
1

2
‖v‖+d (p0, p)

)
‖v‖ . (6.3.3)

Now we can prove the simplified Kantorovich theorem on Riemannian manifolds. The

proof of this theorem will be divided in two parts. First, we will prove that simplified

Kantorovich method is well defined, i.e. {pk}k∈N
⊆ B(p0, t∗) ; we will also prove the con-

vergence of the method. In the second part, we will establish uniqueness.
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• CONVERGENCE

We consider the auxiliary real function f : R −→ R, defined by

f (t) =
l

2
t2− 1

a
t +

b

a
. (6.3.4)

Its discriminant is

4 =
1

a2
(1−2 l ba) ,

which is positive, because abl ≤ 1
2 . Thus f has a least one real root (unique when

h = 1
2
). If t∗ is the smallest root, a direct calculation show that f ′ (t)< 0 for 0≤ t < t∗,

so f is strictly decreasing in [0, t∗] . Therefore the (scalar) Newton’s method can be

applied to f , in other words:

If t0 ∈ [0, t∗), for k = 0,1,2, . . ., we define

tk+1 = tk −
f (tk)

f ′ (0)
.

Then {tk}k∈N
is well defined, strictly increasing and converges to t∗. Furthermore, if

h = abl < 1
2 , then

t∗− tk ≤
b

h

(
1−

√
1−2h

)k+1

, k = 1,2, . . ., see [32]. (6.3.5)

Let us take as starting point t0 = 0. We want to show that Newton’s iteration are well

defined for any q ∈ B(p0, t∗) ⊆ Ω.

We define

K(t) =

{
q ∈ B(p0, t) :

∥∥∥Pσ,0,1DX (p0)
−1

Pσ,1,0X (q)
∥∥∥≤ f (t)

| f ′ (0)| = a f (t) , 0 ≤ t < t∗

}
,

(6.3.6)

where σ : [0,1] −→ M is the minimizing geodesic connecting p0 and q. Note that

K(t) 6= /0 since p0 ∈ K(t) .

Proposition 6.3.4. Under the hypotheses of either the Kantorovich or the simplified

Kantorovich method, if q ∈ B(p0, t∗) , then DX (q) is nonsingular and

∥∥∥DX (q)−1
∥∥∥≤ 1

| f ′ (λ)| where λ = d (p0,q) < t∗.

Proof. Let λ = d (p0,q) and α : [0,1]−→ M be a geodesic with α (0) = p0, α(1) = q

and ‖α′ (0)‖ = λ. Define φ : TqM −→ TqM by letting

φ = Pα,1,0DX (p0)Pα,0,1. (6.3.7)

Since Pα,1,0 and Pα,0,1 are linear, isometric and DX (p0) is nonsingular, we have that

φ is linear, nonsingular and

∥∥φ−1
∥∥=

∥∥∥DX (p0)
−1
∥∥∥ ≤ a =

1

| f ′ (0)| ,
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with α ([0,1]) ⊆ B(p0, t∗) . Since d (p0,q) < t∗, DX ∈ LipL (Ω) and ‖α′ (0)‖ = λ.

Therefore

‖DX (q)−φ‖ ≤ lλ. (6.3.8)

By (6.3.7) and (6.3.8), we have

∥∥φ−1
∥∥‖DX (q)−φ‖ ≤ alλ

≤ alt∗

= al
1

al

(
1−

√
1−2abl

)

≤ 1.

Using Banach’s lemma, we conclude that DX (q) is nonsingular, and

∥∥∥DX (q)−1
∥∥∥≤

∥∥φ−1
∥∥

1−
∥∥φ−1

∥∥‖DX (q)−φ‖
≤ a

1−al λ

≤ 1

| f ′ (λ)| .

Therefore, for any q ∈ B(p0, t∗) , we can apply the Kantorovich methods.

Lemma 6.3.5. Let q ∈ K(t), define

t+ = t − f (t)
| f ′(0)|

q+ = expq

(
−Pσ,0,1DX (p0)

−1
Pσ,1,0X (q)

)
.

Then t < t+ < t∗ and q+ ∈ K(t+) .

Proof. Consider the geodesic γ : [0,1]−→ M defined by

γ (θ) = expq

(
−θPσ,0,1DX (p0)

−1
Pσ,1,0X (q)

)
,

we have

d (p0,γ(θ)) ≤ d (p0,q)+d (q,γ (θ))

≤ t +
∥∥∥θPσ,0,1DX (p0)

−1
Pσ,1,0X (q)

∥∥∥

≤ t +θ
f (t)

| f ′ (0)| .

Since

γ (1) = expq

(
−Pσ,0,1DX (p0)

−1
Pσ,1,0X (q)

)
= q+,
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this implies that

d (p0,q+) = d (p0,γ(1)) ≤ t +
f (t)

| f ′ (0)| = t+,

therefore

q+ ∈ B(p0, t+)⊂ B(p0, t∗) .

Moreover, if σ+ [0,1]−→ M is the minimizing geodesic connecting p0 and q+, then

∥∥∥−Pσ+,0,1DX (p0)
−1

Pσ+,1,0X (q+)
∥∥∥ ≤

∥∥∥DX (p0)
−1
∥∥∥‖X (q+)‖ .

Furthermore, if v = −Pσ,0,1DX (p0)
−1

Pσ,1,0X (q) , then

Pσ,0,1DX (p0)Pσ,1,0v = Pσ,0,1DX (p0)Pσ,1,0

(
−Pσ,0,1DX (p0)

−1
Pσ,1,0X (q)

)

= −Pσ,0,1DX (p0)DX (p0)
−1

Pσ,1,0X (q)

= −X (q) .

By Theorem 6.2.10,

‖X (q+)‖ = ‖X (γ(1))‖

≤ l

(
1

2
‖v‖+d (p0, p)

)
‖v‖

≤ l

(
1

2

∥∥∥−Pσ+ ,0,1DX (p0)
−1

Pσ+ ,1,0X (q)
∥∥∥+ t

)∥∥∥−Pσ+,0,1DX (p0)
−1

Pσ+,1,0X (q)
∥∥∥

≤ l

(
1

2

(
f (t)

| f ′ (0)|

)
+ t

)(
f (t)

| f ′ (0)|

)
.

Thus, by (6.3.6), after some calculations

∥∥∥−Pσ+,0,1DX (p0)
−1

Pσ+,1,0

∥∥∥‖X (q+)‖ ≤
(

1

| f ′ (0)|

)
l

(
1

2

(
f (t)

| f ′ (0)|

)
+ t

)(
f (t)

| f ′ (0)|

)

=
1

8
l
(
2b−2t +alt2

)(
2b +2t +alt2

)

=
f (t+)

| f ′ (0)| ,

we thus conclude

‖X (q+)‖ ≤ f (t+)

| f ′ (0)| ,

and therefore

q+ ∈ K(t+) .

Now we are going to prove that starting from any point of K(t) the simplified Newton

method converges.
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Corollary 6.3.6. Take 0 ≤ t < t∗ and q ∈ K(t) , and define

τ0 = t

τk+1 = τk − f (τk)
| f ′(0)| for each k = 0,1, · · ·

Then the sequence generated by Newton’s method starting with the point q0 = q is

well defined for any k and

qk ∈ K(τk) . (6.3.9)

Moreover {qk}k∈N
converges to some q∗ ∈ B(p0, t∗) , X (q∗) = 0 and

d (qk,q∗) ≤ t∗−τk for each k = 0,1, · · · .

Proof. It is clear that the sequence {τk}k∈N
is the sequence generated by Newton’s method

for solving f (t) = 0. Therefore, {τk}k∈N
is well defined, strictly increasing and it converges

to the root t∗ (see the definition of f ). By hypothesis, q0 ∈ K(τ0) ; suppose that the points

q0,q1, . . . ,qk are well defined. Then, using Banach’s Lemma, we conclude that qk+1 is well

defined. Furthermore,

d (qk+1,qk) ≤
∥∥∥−Pσk ,0,1DX (p0)

−1
Pσk ,1,0X (qk)

∥∥∥ .

Since

qk+1 = expqk

(
−Pσk ,0,1DX (p0)

−1
Pσk,1,0X (qk)

)

and σk : [0,1] −→ M is the minimizing geodesic connecting p0,qk, from Lemma 6.3.5 and

using (6.3.9) we obtain

d (qk+1,qk) ≤
f (τk)

| f ′ (0)| = τk+1−τk. (6.3.10)

Hence, for k ≥ s, s ∈ N,

d (qk,qs)≤ τs −τk. (6.3.11)

It follows that {qk}k∈N
is a Cauchy sequence. Since M is complete, it converges to the some

q∗ ∈ M. Moreover qk ∈ K(τk)⊆ B [p0, t∗], therefore q∗ ∈ B [p0, t∗] .
Next, we prove that X (q∗) = 0. We have

‖X (qk)‖ =
∥∥∥Pσk ,0,1DX (p0)Pσk ,1,0Pσk ,0,1DX (p0)

−1
Pσk,1,0X (qk)

∥∥∥

≤ ‖DX (p0)‖
∥∥∥DX (p0)

−1
X (qk)

∥∥∥

≤ (‖DX (p0)‖)
f (τk)

| f ′ (0)|
= (‖DX (p0)‖) (τk+1−τk) .

Passing to the limit in k, we conclude X (q∗) = 0. Finally, letting s −→ ∞ in (6.3.11), we

get

d (q∗,qk) ≤ t∗−τk.
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• Finally, from (6.3.5)

d (q∗,qk)≤
b

h

(
1−

√
1−2h

)k+1

, k = 1,2, . . .

By hypothesis, p0 ∈K(0) , thus by the Lemma 6.3.5, the sequence {pk}k∈N
generated

by (6.3.1) is well defined, contained in B(p0, t∗) and converges to some p∗, which is

a singular point of X in B [p0, t∗]. Moreover, if h < 1/2, then

d (pk, p∗)≤
b

h

(
1−

√
1−2h

)k+1

.

• UNIQUENESS

This proof will be made in an indirect way, by contradiction. But before we are going

to establish some results.

Lemma 6.3.7. Take 0 ≤ t < t∗ and q ∈ K(t) , let

A−1 = −Pσ,0,1DX (p0)
−1

Pσ,1,0

v = A−1X (q) ,

where σ : [0,1]−→ M is a minimizing geodesic connecting p0, pk. Define for θ ∈ R

τ(θ) = t +θa f (t) ,
γ (θ) = expq (θv) .

Then, for θ ∈ [0,1]

t < τ(θ) < t∗ and γ (θ) ∈ K(τ(θ)) .

Proof. Because γ is a minimizing geodesic, for all θ ∈ [0,1] we have

d (p0,γ(θ)) ≤ d (p0,q)+d (q,γ(θ))

≤ t +θ‖v‖
≤ t +θa f (t)

= τ(θ) .

This implies that

t ≤ τ(θ) ≤ τ(1)≤ t∗ and γ ([0,θ])⊂ B(p0, t∗) . (6.3.12)

Using the Lemma 6.3.2, we obtain

X (γ (θ)) = Pγ,0,θ (X (p)+Pσ,0,1θDX (p0)Pσ,1,0v+R(θ)) ,

with

R(θ) =

Z θ

0

(
Pγ,s,0DX (γ (s))Pγ,0,sv−Pσ,0,1DX (p0)Pσ,1,0v

)
ds,
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and

‖R(θ)‖ ≤ L

(
θ

2
‖v‖+d (p0,q)

)
θ‖v‖ .

This yields to

∥∥∥A−1X (γ (θ))
∥∥∥=

∥∥∥∥A−1Pγ,0,θ

(
X (q)−

Z θ

0
Pγ,s,0DX (γ (s))Pγ,0,sv

)
ds

∥∥∥∥

=

∥∥∥∥A−1Pγ,0,θ

(
(1−θ)X (q)−

Z θ

0

(
Pγ,s,0DX (γ(s))Pγ,0,s −DX (q)

)
v

)
ds

∥∥∥∥

≤
∥∥∥A−1Pγ,0,θ (1−θ)X (q)

∥∥∥+

∥∥∥∥A−1Pγ,0,θ

Z θ

0

(
Pγ,s,0DX (γ(s))Pγ,0,s −DX (q)

)
vds

∥∥∥∥

≤ (1−θ)a f (t)+a‖R(θ)‖

≤ (1−θ)a f (t)+aL

(
θ

2
‖v‖+d (p0,q)

)
θ‖v‖

≤ (1−θ)a f (t)+aL

(
θ

2
a f (t)+ t

)
θa f (t)

=
1

8

(
2b−2 t +aLt2

)(
−4θ+a2L2θ2t2 +4aLθt +2abLθ2−2aLθ2t +4

)

= a f (τ(θ)) .

Therefore

γ(θ) ∈ K(τ(θ)) ,

and the Lemma is proved.

Lemma 6.3.8. Let 0≤ t < t∗ and q∈K(t) . Suppose that q∗ ∈B [p0, t∗] is a singularity

of the vector field X and

t +d (q,q∗) = t∗.

Then

d (p0,q) = t.

Moreover, letting

t+ = t +a f (t) ,

q+ = expq

(
A−1X (q)

)
,

then t < t+ < t∗, q+ ∈ K(t+) and

t+ +d (q+,q∗) = t∗.

Proof. Consider the minimizing geodesic α : [0,1]−→ M joining q to q∗. Since q ∈ K(t) ,

we have

d (p0,α(θ)) ≤ d (p0,q)+d (q,α (θ))

≤ t +θd (q,q∗)

≤ t +d (q,q∗)

= t∗.

It follows that α ([0,1]) ⊂ B(p0, t∗) . Taking u = α′ (0) , by Lemma 6.3.2 we have

Pα,1,0X (α (1)) = X (q)+Pσ,0,1DX (p0)Pσ,1,0u+R(1) ,
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with

‖R(1)‖ ≤ L

(
1

2
‖u‖+d (p0,q)

)
‖u‖ .

Therefore

‖R(1)‖ ≤ L

(
1

2
d (q,q∗)+d (p0,q)

)
d (q,q∗) (6.3.13)

= L

(
1

2
(t∗− t)+d (p0,q)

)
(t∗− t)

≤ L

(
1

2
(t∗− t)+ t

)
(t∗− t) (6.3.14)

= L
1

2
(t∗+ t) (t∗− t) .

On the other hand, since | f (t)| is strictly decreasing in [0, t∗] and 0 ≤ d (p0,q)≤ t < t∗,

‖R(1)‖ = ‖X (q)+Au‖ (6.3.15)

≥ 1∥∥∥DX (p0)
−1
∥∥∥

∥∥A−1X (q)+u
∥∥

≥
∣∣ f ′ (0)

∣∣∥∥A−1X (q)+u
∥∥

≥
∣∣ f ′ (0)

∣∣(‖u‖−
∥∥A−1X (q)

∥∥)

≥
∣∣ f ′ (0)

∣∣(‖u‖−a f (t))

= − f ′ (0)(t∗− t)− f (t) > 0.

Because
f ′′ (t) = L,

0 = f ′ (t∗) = f (t)+ f ′ (t)(t∗− t)+ 1
2

f ′′ (t)(t∗− t)2 ,

and

f ′ (t) = f ′ (0)+

Z t

0
f ′′ (t)dt,

therefore

0 = f (t)+
(

f ′ (0)+ tL
)
(t∗− t)+

1

2
L(t∗− t)2 ,

hence
1

2
L(t∗ + t) (t∗− t) = − f ′ (0)(t∗− t)− f (t) .

Thus, the last term in (6.3.13) is equal to the last term in the inequality (6.3.15), we conclude

that all these inequalities in (6.3.15) are equalities, in particular

1

‖DX(p0)
−1‖ = | f ′ (0)| = a,

‖u‖−
∥∥A−1X (q)

∥∥=
∥∥A−1X (q)+u

∥∥> 0,∥∥A−1X (q)
∥∥= a f (t) ,

L
(

1
2
(t∗− t)+d (p0,q)

)
(t∗− t) = L

(
1
2
(t∗− t)+ t

)
(t∗− t) .

(6.3.16)
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From the last equation in (6.3.16), we obtain

d (p0,q) = t,

the second equation in (6.3.16) implies that u and A−1X (q) are linearly dependent vectors

in TqM, so that there exists r ∈ R such that

A−1X (q) = −ru.

Thus, the second equation implies

1−|r| = |1− r| ,

and because r 6= 0 and r 6= 1, we have 0 < r < 1, thus

q+ = expq (ru) = α (r) .

Moreover, given that α is a minimizing geodesic joining q to q∗, we have that q, α (r) and

q∗ are in the same geodesic line, thus

d (q,α(r))+d (α(r) ,q∗) = d (q,q∗) ,

therefore,

d (q,q+)+d (q+,q∗) = d (q,q∗) .

Moreover,

d (q,q+) = ‖ru‖=
∥∥A−1X (q)

∥∥ = a f (t) = t+− t,

hence

d (q+,q∗) = d (q,q∗)−d (q,q+) = (t∗− t)− (t+− t) = t∗− t+,

that is

d (q+,q∗)+ t+ = t∗.

Corollary 6.3.9. Suppose that q∗ ∈ B [p0, t∗] is a zero of the vector field X. If there exist t̃

and q̃ such that

0 ≤ t̃ < t∗, q̃ ∈ K(t̃) and t̃ +d (q̃,q∗) = t∗,

then

d (p0,q∗) = t∗.

Proof. Changing τ0 by t̃ and q0 by q̃ in Corollary 6.3.6, we obtain that

qk ∈ K(τk) , for all k ∈ N,

{τk}k∈N
converges to t∗, {qk}k∈N

converges to some q̃∗ ∈ B(p0, t∗) , and X (q∗) = 0. More-

over, by Lemma 6.3.8 and applying induction, it is easy to show that for all k,

d (p0,qk) = τk and d (qk,q∗) = t∗−τk.
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Passing to the limit, we obtain

d (p0, q̃∗) = t∗ and d (q̃∗,q∗) = 0.

Therefore q̃∗ = q∗ and

d (p0,q∗) = t∗.

The two following Lemmas complete the proof of the uniqueness.

Lemma 6.3.10. The limit p∗ of the sequence {pk}k∈N
is the unique singularity of X in

B [p0, t∗] .

Proof. Let q∗ ∈ B [p0, t∗] a singularity of the vector field X . Using induction, we will show

that

d (pk,q∗)+ tk ≤ t∗.

We need to consider two cases:

Case 1. (d (p0,q∗) < t∗). First we show by induction that for all k ∈ N,

d (pk,q∗)+ tk < t∗. (6.3.17)

Indeed, for k = 0 (6.3.17) is immediately true, because t0 = 0. Now, suppose the property

is true for some k. Let us take the geodesic

γk (θ) = exppk
(−θvk) ,

where vk is defined in (6.3.1). From Lemma 6.3.7, for all θ ∈ [0,1] ,

γk (θ) ∈ K(tk +θ (tk+1− tk)) . (6.3.18)

Define φ : [0,1]−→ M by

φ (θ) = d (γk (θ) ,q∗)+ tk +θ (tk+1− tk) . (6.3.19)

We know that

φ (0) = d (pk,q∗)+ tk < t∗.

We next show, by contradiction, that φ (θ) 6= t∗ for all θ ∈ [0,1] .
Suppose that there exists a θ̃ ∈ [0,1] such that φ

(
θ̃
)

= t∗, and let q̃ = γk

(
θ̃
)

and t̃ =

tk + θ̃ (tk+1− tk) . By (6.3.18) and (6.3.19),

q̃ ∈ K(t̃) and d (q̃,q∗)+ t̃ = t∗.

Applying Corollary 6.3.9, we conclude that

d (p0,q∗) = t∗,
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which contradicts our assumption. Thus φ (θ) 6= t∗ for all θ ∈ [0,1], Since φ(0) < t∗ and φ

is continuous, we have that φ (θ) < t∗ for all θ ∈ [0,1] . In particular, by (6.3.19),

d (γk (1) ,q∗)+ tk+1 = φ (1) < t∗.

Thus,

d (pk+1,q∗)+ tk+1 < t∗,

in this way (6.3.17) is true for all k ∈ N.

Case 2. (d (p0,q∗) = t∗). Using induction, let us prove that for all k ∈ N,

d (pk,q∗)+ tk = t∗. (6.3.20)

Indeed, for k = 0, this is immediately true, because t0 = 0. Now, suppose that (6.3.20) is

true for some k. Since pk ∈ K(tk), by Lemma 6.3.8 we conclude that

d (pk+1,q∗)+ tk+1 = t∗.

Finally, by (6.3.17) and (6.3.20) we conclude that for all k ∈ N,

d (pk,q∗)+ tk ≤ t∗,

and passing to the limit k −→ ∞, we obtain d (p∗,q∗) = 0, and therefore

p∗ = q∗.

Lemma 6.3.11. If h = abL < 1
2 and B(p0, r)⊆ Ω, with

t∗ < r ≤ t∗∗ =
1

aL

(
1+

√
1−2h

)
,

then the limit p∗ of the sequence {pk}k∈N
is the unique singularity of the vector field X in

B(p0, r) .

Proof. Let q∗ ∈ B(p0, r) be a singularity of the vector field X in B(p0, r) . Let us consider

the minimizing geodesic α : [0,1]−→ M joining p0 to q∗. By Lemma 6.3.2,

Pα,1,0X (α (1)) = X (p0)+Pσ,0,1DX (p0)Pσ,1,0u+R(1) ,

where

‖R(1)‖ ≤ L

(
1

2
‖u‖+d (p0, p0)

)
‖u‖ =

L

2
d (p0,q∗)

2
and ‖u‖= d (p0,q∗) . (6.3.21)

In a similar way to the inequality (6.3.15), is easy to prove that

‖R(1)‖ ≥ 1

a

(
‖u‖−

∥∥∥DX (p0)
−1

X (p0)
∥∥∥
)

≥ 1

a
d (p0,q∗)−

b

a
.
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Therefore
L

2
d (p0,q∗)

2 ≥ 1

a
d (p0,q∗)−

b

a
,

hence

f (d (p0,q∗)) ≥ 0,

since d (p0,q∗) ≤ r ≤ t∗∗, then

d (p0,q∗) ≤ t∗.

Finally, from Lemma 6.3.10,

p∗ = q∗.

6.4. Order of Convergence of Newton-Type Methods

The analysis of the order of convergence is performed in a local way, that is, in a neigh-

borhood of the zero of the vector field. Then, we can define the order of convergence in

Riemannian manifolds in following way:

Definition 6.4.1. Let M be a manifold and let {pk}k∈N
be a sequence on M converging to

p∗. If there exists a system of coordinates (U,x) of M with p∗ ∈ Uα, constants p > 0,c ≥ 0

and K ≥ 0 such that, for all k ≥ K, {pk}∞
k=K ⊆Uα the following inequality holds:

∥∥x−1 (pk+1)−x−1 (p∗)
∥∥ ≤ c

∥∥x−1 (pk)−x−1 (p∗)
∥∥p

, (6.4.1)

then we said that {pk}k∈N
converges to p∗ with order at least p.

It can be shown that the definition above do not depend on the choice of the coordinates

system and the multiplicative constant c depends on the chart, but for any chart, there exists

such a constant, (see [1]).

Notice that in normal coordinates of 0pk
,

∥∥exp−1
pk

(p)−exp−1
pk

(q)
∥∥= d (p,q) ,

thus, in normal coordinates, (6.4.1) is transformed into

d (pk+1, p∗) ≤ cd (pk, p∗)
p .

Lemma 6.4.2. Let M be an Riemannian manifold, Ω ⊆ M be an open set, X ∈ χx(M) and

DX ∈ Lipl (Ω) . Let us take p ∈ Ω , v ∈ TpM and

γ (t) = expp (tv) .

If γ[0, t)⊆ Ω, then

Pγ,t,0X (γ (t)) = X (p)+ tDX (p)v+R(t)

with

‖R(t)‖ ≤ l

2
t2‖v‖2
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Proof. From Theorem 6.2.9, it follows that

Pγ,t,0X (γ (t))−X (γ(0)) =
Z t

0
Pγ,s,0

(
DX (γ (s))γ′ (s)

)
ds.

Given that γ is a geodesic, we have that γ′ (t) is parallel and γ′ (s) = Pγ,0,sγ
′ (0) . Moreover,

since γ′ (0) = v then

Pγ,t,0X (γ (t))−X (p) =

Z t

0
Pγ,s,0

(
DX (γ(s))Pγ,0,sv

)
ds.

Therefore
Pγ,t,0X (γ (t))−X (p)− tDX (p)v

=
R t

0 Pγ,s,0

(
DX (γ (s))Pγ,0,sv

)
ds− tDX (p)v

=
R t

0

(
Pγ,s,0

(
DX (γ(s))Pγ,0,sv

)
−DX (p)v

)
ds,

let

R(t) =

Z t

0

(
Pγ,s,0DX (γ(s))Pγ,0,sv−DX (p)v

)
ds.

By hypothesis, DX ∈ LipL (Ω) , hence

‖R(t)‖ ≤
Z t

0

∥∥(Pγ,s,0DX (γ (s))Pγ,0,sv−DX (p)v
)∥∥ds

≤
Z t

0

∥∥(Pγ,s,0DX (γ (s))Pγ,0,s −DX (p)
)∥∥‖v‖ds

≤
Z t

0

(
L

Z s

0

∥∥γ′ (τ)
∥∥dτ

)
‖v‖ds.

Since γ is a geodesic, ‖γ′ (τ)‖ is constant. Therefore,

∥∥γ′ (τ)
∥∥ =

∥∥γ′ (0)
∥∥= ‖v‖ ,

thus

‖R(t)‖ ≤
Z t

0

(
L

Z s

0
‖v‖dτ

)
‖v‖ds =

Z t

0
L‖v‖s‖v‖ds =

L

2
t2‖v‖2 .

Lemma 6.4.3. (Order of convergence)

i) The convergence order of the Newton method in Riemannian manifold is two

(quadratic convergence).

ii) The convergence order of the simplified Newton method in Riemannian manifold is

one (linear convergence).

Proof. Let k be sufficiently large in such a way that p∗, pk, pk+1, . . . , belong to a normal

neighborhood U of pk. Let us consider the geodesic γk joining pk to p∗ defined by

γk (t) = exppk
(tuk) ,
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where uk ∈ Tpk
M and d (pk, p∗) = ‖uk‖ .

We know that if p, q be in one normal neighborhood U of pk, then

∥∥exp−1
pk

(p)−exp−1
pk

(q)
∥∥= d (p,q) .

i) By Lemma 6.3.2,

Pγ,t,oX (p∗) = X (pk)+DX (pk)uk +R(1) ,

with

‖R(1)‖ ≤ L

2
‖uk‖2

and ‖uk‖ = d (pk, p∗) .

Hence,

0 = DX (pk)
−1

X (pk)+uk +DX (pk)
−1

R(1) .

Since

−DX (pk)
−1

X (pk) = exp−1
pk

(pk+1) and uk = exp−1
pk

(p∗) ,

we have

exp−1
pk

(pk+1)−exp−1
pk

(p∗) = DX (pk)
−1

R(1) ,

thus

d (pk+1, p∗) ≤
∥∥∥DX (pk)

−1
∥∥∥

L

2
‖uk‖2 .

Moreover, by Banach’s Lemma,

∥∥∥DX (pk)
−1
∥∥∥≤ a

1−ald (pk, p0)
≤ a

1−alτk

≤ a

1−alt∗
=

a√
1−2abl

.

Therefore

d (pk+1, p∗) ≤Cd (pk, p∗)
2 ,

with

C =
La

2
√

1−2abL
.

ii) Let p0 be sufficiently near to p∗ in such a way that p0 is in the normal neighborhood

U of 0pk
, By Lemma 6.3.2, if σk : [0,1] −→ M is the minimizing geodesic connecting p0,

pk, then

Pγ,1,0X (p∗) = X (pk)+Pσk ,0,1DX (p0)Pσk ,1,0uk +R(1) ,

with

‖R(1)‖ ≤ L

(
1

2
‖uk‖+d (p0, pk)

)
‖uk‖ .

Therefore

0 = Pσk ,0,1DX (p0)
−1

Pσk,1,0X (pk)+uk +Pσk ,0,1DX (p0)
−1

Pσk ,1,0R(1) .

Since

−Pσk,0,1DX (p0)
−1

Pσk ,1,0X (pk) = exp−1
pk

(pk+1) and uk = exp−1
pk

(p∗) ,
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we have

exp−1
pk

(pk+1)−exp−1
pk

(p∗) = Pσk ,0,1DX (p0)
−1

Pσk,1,0R(1) .

We thus conclude that

d (pk+1, p∗) =
∥∥exp−1

pk
(pk+1)−exp−1

pk
(p∗)

∥∥

=
∥∥∥Pσk,0,1DX (p0)

−1
Pσk ,1,0R(1)

∥∥∥

≤
∥∥∥DX (p0)

−1
∥∥∥‖R(1)‖

≤ al

(
1

2
‖uk‖+d (p0, pk)

)
‖uk‖

= al

(
1

2
d (pk, p∗)+d (p0, pk)

)
d (pk, p∗)

= al

(
1

2

d (pk, p∗)
d (p0, pk)

+1

)
d (p0, pk)d (pk, p∗) .

If k is sufficiently large, then d (pk, p∗) ≤ d (p0, pk) , and therefore
(

1

2

d (pk, p∗)
d (p0, pk)

+1

)
≤ 3

2
,

and then, for p0 sufficiently close to p∗,

d (pk+1, p∗) ≤ K0d (p0, pk)d (pk, p∗) ,

with K0 ≤ 3aL
2

.

Remark 6.4.4. Note that if instead of putting in the Kantorovich method the point p0, we fix

p j sufficiently close to p∗, we will obtain a new convergent method. Indeed the calculations

made in the previous lemma become in

d (pk+1, p∗)≤ K jd (p j, p∗)d (pk, p∗) ,

with K j ≤ 3aL
2

. Thus,

d (pk+1, p∗) ≤ Kd (p j, p∗)d (pk, p∗) , (6.4.2)

with K ≤ 3aL
2

.

6.5. One Family of High Order Newton-Type Methods

We recall the Shamanskii family of iterative methods. Given an integer m and an initial

point x0 in a Banach Space, we move from xn to xn+1 through an intermediate sequence{
yi

n

}m

i=0
, y0

n = xn, which is a generalization of Newton (m = 1) and simplified Newton

(m = ∞) methods




y1
n = y0

n −DF
(
y0

n

)−1
F
(
y0

n

)

y2
n = y1

n −DF
(
y0

n

)−1
F
(
y1

n

)

...

ym
n = xn+1 = ym−1

n −DF
(
y0

n

)−1
F

(
y
(m−1)
n

)
,
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For a problem on Riemannian manifolds, let us consider the family




q1
n = exppn

(
−DX (pn)

−1
X (pn)

)

q2
n = expq1

n

(
−Pσ1,0,1DX (pn)

−1
Pσ1,1,0X

(
q1

n

))

...

qm
n = pn+1 = expqm−1

n

(
−Pσm−1,0,1DX (pn)

−1
Pσm−1,1,0X

(
q

(m−1)
n

))
,

(6.5.1)

where σk : [0,1] −→ M be the minimizing geodesic joining the points pn and qk
n; k =

1,2, . . ., (m−1) , thus:

σk (0) = pn and σk (1) = qk
n.

Theorem 6.5.1. Under the hypotheses of Kantorovich’s theorem, the method described in

(6.5.1) converges with order of convergence m+1.

Proof. Let us observe that

d (pn+1, pn) ≤ d
(

pn+1,q
(m−1)
n

)
+d
(

q
(m−1)
n ,q

(m−2)
n

)
+ · · ·+d

(
q2

n,q1
n

)
+d
(
q1

n, pn

)
.

Now, if we define pn+1 = qm
n , pn = q1

n, looking at each step as a different method according

to (6.5.1) , then by Kantorovich theorem in the first step and by the simplified Kantorovich

theorem for the following steps, each one of the sequences {qm
n }m∈N

for fixed n, is con-

vergent to the same point p∗ ∈ M. Therefore, {pn}p∈N
is convergent to p∗. Moreover, for

Lemma 6.4.3 i) and (6.4.2),

d (pn+1, p∗) ≤ Kd (pn, p∗)d

(
q

(m−1)
n , p∗

)
≤ Kd (pn, p∗)Kd (pn, p∗)d

(
q

(m−2)
n , p∗

)

≤ ·· · ≤ Km−1d (pn, p∗)
m−1

d
(
q1

n, p∗
)
≤ Km−1d (pn, p∗)

m−1
Cd (pn, p∗)

2 .

Therefore,

d (pn+1, p∗)≤ CKm−1d (pn, p∗)
m+1 .

6.6. Expanding the Applicability of Newton Methods

We have used Lipschitz condition (6.2.13) and the famous Kantorovich sufficient conver-

gence criterion (6.1.1) in connection to majorizing function f for the semilocal convergence

of both simplified Newton and Newton methods. According to the proof of Lemma 6.3.2,

corresponding majorizing sequences for these methods are given by (see [27])

t0 = 0, t1 = b

tk+1 = tk +
f (tk)

| f ′(0)| = tk +
al

2
(tk − tk−1)

2 for each k = 1,2, · · · (6.6.1)

for the simplified Newton method and

u0 = 0, u1 = b

uk+1 = uk +
f (uk)

| f ′(uk)|
= uk +

al (uk −uk−1)
2

2(1−al uk)
for each k = 1,2, · · · (6.6.2)
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for the Newton method. Kantorovich criterion (6.1.1) may be not satisfied on a particular

problem but Newton methods may still converges to p∗ [27]. Next, we shall show that

condition (6.1.1) can be weakened by introducing the center Lipschitz condition and relying

on tighter majorizing sequences instead of majorizing function f .

Definition 6.6.1. Let E be a Banach space, Ω ⊆ E be an open convex set, F : Ω −→ Ω be

a continuous operator, x0 be a point in Ω, such that F ∈ C1 and DF is center-Lipschitz in

Ω at x0

‖ DF(x)−DF(x0) ‖≤ l0 ‖ x−x0 ‖ for each x ∈ Ω and some l0 > 0.

As in the case of Definition 6.2.7 we will write DF ∈ Lipl0(Ω) at x0 ∈ Ω.

Note that

l0 ≤ l (6.6.3)

holds in general and l/l0 can be arbitrarily large [?], [14].

We present the semilocal convergence of the simplified Newton method using only the

center-Lipschitz condition.

Theorem 6.6.2. Let M be a Riemannian manifold, Ω⊆M be an open convex set, X ∈ χ(M).

Suppose that for some p0 ∈ Ω, DX ∈ Lipl0(Ω) at p0, DX(p0) is invertible and that for some

a > 0 and b ≥ 0, the following hold

∥∥∥DX (p0)
−1
∥∥∥≤ a,

∥∥∥DX (p0)
−1

X (x0)
∥∥∥≤ b,

h0 = abl0 ≤
1

2
(6.6.4)

and

B
(

p0, t
0
∗
)
⊆ Ω where t0

∗ =
1

al0

(
1−
√

1−2h0

)
.

Then, sequence {pk} generated by (6.3.1) is such that {pk} ⊆ B(p0, t
0
∗) and pk → p∗, which

the only singularity of X in B(p0, t
0
∗). Moreover, if h0 < 1/2 and B(p0, r)⊆ Ω with

t0
∗ < r ≤ t0

∗∗ =
1

al0

(
1+
√

1−2h0

)

and p∗ is also the only singularity of F in B(p0, r). Furthemore, the following error bounds

are satisfied fr each k = 1,2, · · ·

d(pk, pk−1) ≤ t0
k − t0

k−1,

d(pk, p∗)≤ t0
∗ − t0

k

and

d(pk, p∗)≤
b

h0

(1−
√

1−2h0)
k+1,
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where sequence {t0
k} is defined by

t0
0 = 0, t0

1 = b

t0
k+1 = t0

k +
al0

2
(t0

k − t0
k−1)

2 for each k = 1,2, · · · .

Proof. Simply notice that l0, h0, {t0
k}, t0

∗ , t0
∗∗ can replace l, h, {tk}, t∗, t∗∗, respectively, in

the proof of Theorem 6.3.1.

Remark 6.6.3. Under Kantorovich criterion (6.1.1) a simple inductive argument shows

that

t0
k ≤ tk and t0

k+1− t0
k ≤ tk+1− tk for each k = 0,1, · · · .

Moreover, we have that

t0
∗ ≤ t∗, t∗∗ ≤ t0

∗∗, h ≤ 1

2
=⇒ h0 ≤

1

2

and
h0

h
−→ 0 as

l0

l
−→ 0.

Furthemore, strict inequality holds in these estimates (for k > 1) if l0 < l.

The convergence order of simplified method is only linear, whereas the convergence

order of Newton method is quadratic if h < 1/2. If criterion h ≤ 1/2 is not satisfied but

weaker h0 ≤ 1/2 is satisfied, we can start with the simplified method until a certain iterate

xN (N a finite natural integer) at which criterion h ≤ 1/2 is satisfied. Such an integer N

exists. Since the simplified Newton method converges [8], [12], [14]. This approach was

not possible before since h ≤ 1/2 was used at the convergence criterion for both methods.

Remark 6.6.4. Under the hypotheses of Theorem 6.1.2, we see in the proof of this Theorem,

sequences {rk}, {sk} defined by

r0 = 0, r1 = b, r2 = r1 +
al0 (r1− r0)

2

2(1−al0 r1)2

rk+1 = rk +
al (rk − rk−1)

2

2(1−al0 rk)
for each k = 2,3, · · ·

(6.6.5)

s0 = 0, s1 = b

sk+1 = sk +
al (sk − sk−1)

2

2(1−al0 sk)
for each k = 1,2, · · · (6.6.6)

are also majorizing sequences for {pk} such that

rk ≤ sk ≤ uk, d(pk, pk−1) ≤ rk − rk−1 ≤ sk − sk−1 ≤ uk −uk−1

and

r∗ = lim
k→∞

rk ≤ s∗ = lim
k→∞

sk ≤ t∗ = lim
k→∞

uk.
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Simply notice that for the computation of the upper bound on the norms ‖ DX(q)−1 ‖ (see

(6.3.8)), we can have using the center-Lipschitz condition

‖ DX(q)−1 ‖≤ ‖ φ−1 ‖
1− ‖ φ−1 ‖‖ DX(q)−φ ‖

≤ a

1−al0 λ

instead of the less tight (if l0 < l) and more expensive to compute estimate

‖ DX(q)−1 ‖≤ a

1−al λ

obtained in the proofs of Theorems 6.1.2 and 6.3.1 using the Lipschitz condition. Hence, the

results of Theorem 6.1.2 involving sequence {uk} can be rewritten using tighter sequences

{rk} or {sk}. Note that the introduction of the center-Lipschitz condition is not an addi-

tional hypothesis to Lipschitz condition since in practice, the computation of l requires the

computation of l0. So far we showed that under Kantorovich criterion (6.1.1) the estimates

of the distances d(pk, pk−1), d(pk, p∗) are improved (if l0 < l) using tighter sequences {rk},

{sk} for the computation on the upper bounds of these distances. Moreover, the information

on the location of the solution is at least as precise.

Next, we shall show that Kantorovich criterion (6.1.1) can be weakened if one directly

(and not through majorizing function f ) studies the convergence of sequences {rk} and

{sk}. First, we present the results for sequence {sk}.

Lemma 6.6.5. [13] Assume there exist constants l0 ≥ 0, l ≥ 0, a > 0 and b ≥ 0 with l0 ≤ l

such that

h1 = l b

{
≤ 1/2 if l0 6= 0

< 1/2 if l0 = 0
(6.6.7)

where l =
a

8

(
l +4 l0 +

√
l2 +8 l0 l

)
. Then, sequence {sn} given by (6.6.6) is nondecreas-

ing, bounded from above by s?? and converges to its unique least upper bound s? ∈ [0, s??],
where

s?? =
2b

2−δ
and δ =

4 l

l +
√

l2 +8 l0 l
< 1 for l0 6= 0. (6.6.8)

Moreover the following estimates hold

a l0 s? ≤ 1, (6.6.9)

0 ≤ sn+1− sn ≤
δ

2
(sn − sn−1) ≤ ·· · ≤

(
δ

2

)n

b for each n = 1,2, · · · , (6.6.10)

sn+1− sn ≤
(

δ

2

)n

(2h1)
2n−1 b for each n = 0,1, · · · (6.6.11)

and

0 ≤ s?− sn ≤
(

δ

2

)n (2h1)
2n−1 b

1− (2h1)2n , (2h1 < 1) for each n = 0,1, · · · . (6.6.12)
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Lemma 6.6.6. [16] Suppose that hypotheses of Lemma 6.6.5 hold. Assume that

h2 = l2 b ≤ 1

2
, (6.6.13)

where l2 =
a

8
(4 l0 +(l l0 + 8 l2

0)
1/2 +(l0 l)1/2). Then, scalar sequence {rn} given by (6.6.5)

is well defined, increasing, bounded from above by

r?? = b+
al0 b2

2(1− (δ/2)) (1−al0 b)
(6.6.14)

and converges to its unique least upper bound r? which satisfies 0 ≤ r? ≤ r??. Moreover,

the following estimates hold

0 < rn+2− rn+1 ≤ (δ/2)n al0 b2

2(1−al0 b)
for each n = 1,2, · · · . (6.6.15)

Lemma 6.6.7. [16] Suppose that hypotheses of Lemma 6.6.5 hold and there exists a mini-

mum integer N > 1 such that iterates ri (i = 0,1, · · · ,N−1) given by (6.6.5) are well defined,

ri < ri+1 <
1

al0
for each i = 0,1, · · · ,N −2 (6.6.16)

and

rN ≤ 1

al0
(1− (1−al0 rN−1)

δ

2
). (6.6.17)

Then, the following assertions hold

a l0 rN < 1, (6.6.18)

rN+1 ≤
1

al0
(1− (1−al0 rN)

δ

2
), (6.6.19)

δN−1 ≤
δ

2
≤ 1− al0 (rN+1− rN)

1−al0 rN

, (6.6.20)

sequence {rn} given by (6.6.5) is well defined, increasing, bounded from above by

r?? = rN−1 +
2

2−δ
(rN − rN−1)

and converges to its unique least upper bound r? which satisfies 0 ≤ r? ≤ r??, where δ is

given in Lemma 6.6.5 and

δn =
al (rn+2− rn+1)

2(1−al0 rn+2)
.

Moreover, the following estimates hold

0 < rN+n − rN+n−1 ≤
(

δ

2

)n−1

(rN+1− rN) for each n = 1,2, · · · .
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Remark 6.6.8. If N = 2 we must have

r2 = b+
al0 b

2(1−al0 b)
≤ al b+δ

al +δ al0
,

which is (6.6.13). When N > 2 we do not have closed form inequalities (solved for n)

anymore given by

c0 η ≤ c1,

where c0 and c1 may depend on l0 and l, see e.g. (6.6.7) or (6.6.13). However, the corre-

sponding inequalities can also be checked out, since only computations involving b, l0, and

l are carried out (see also [16]). Clearly, the sufficient convergence conditions of the form

(6.6.17) become weaker as N increases.

Remark 6.6.9. In [14], [16], tighter upper bounds on the limit points of majorizing se-

quence {rn}, {sn}, {uk} than [6, 8, 32] are given. Indeed, we have that

r? = lim
n→∞

rn ≤ r3 =

(
1+

al0 b

(2−δ) (1−al0 b)

)
b.

Note that

r3

{
≤ r2 if l0 ≤ l

< r2 if l0 < l
and r3

{
≤ r1 if l0 ≤ l

< r1 if l0 < l

where

r2 =
2b

2−δ
and r1 = 2b.

Moreover, r2 can be smaller than s? for sufficiently small l0. We have also that

h ≤ 1

2
=⇒ h1 ≤

1

2
=⇒ h2 ≤

1

2
,

but not necessarily vice versa unless if l0 = l. Moreover, we have that

h1

h
−→ 1

4
,

h2

h
−→ 0 and

h2

h1

−→ 0 as
l0

l
−→ 0.

Example 6.6.10. We consider a simple example to test the ”h” conditions in one dimension.

Let X = R, x0 = 1, Ω = [d,2−d], d ∈ [0, .5). Define function F on Ω by

F(x) = x3 −d. (6.6.21)

We get that

b =
1

3
(1−d) and l = 2(2−d).

Kantorovich condition (6.1.1) is given by

h =
2

3
(1−d) (2−d) > .5 for all d ∈ (0, .5).
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Hence, there is no guarantee that Newton’s method starting at x0 = 1 converges to x?.

However, one can easily see that if for example d = .49, Newton’s method converges to

x? =
3
√

.49. In view of (6.6.21), we deduce the center-Lipschitz condition

l0 = 3−d < l = 2(2−d) for all d ∈ (0, .5). (6.6.22)

We consider the ”h” conditions of Remark 6.6.9. Then, we obtain that

h1 =
1

12
(8−3d +(5d2 −24d +28)1/2) (1−d) ≤ .5 for all d ∈ [.450339002, .5)

and

h2 =
1

24
(1−d) (12−4d +(84−58d +10d2)1/2 +(12−10d +2d2)1/2) ≤ .5

for all d ∈ [.4271907643, .5).

In Fig. 6.6.1, we compare the ”h” conditions for d ∈ (0, .999).

Figure 6.6.1. Functions h, h1, h2 (from top to bottom) with respect to d in interval (0, .999),

respectively. The horizontal blue line is of equation y = .5.



References

[1] Absil, P.A. Mahony, R., Sepulchre, R., Optimization Algorithms on Matrix Manifolds,

Princeton University Press, Princeton NJ, 2008.

[2] Adler, R.L., Dedieu, J.P., Margulies, J.Y., Martens, M., Shub,M., Newton’s method

on Riemannian manifolds and a geometric model for the human spine, IMA J. Numer.

Anal., 22 (2002), 359–390.

[3] Alvarez, F., Bolte, J., Munier, J., A unifying local convergence result for Newton’s

method in Riemannian manifolds, Foundations Comput. Math., 8 (2008), 197–226.

[4] Amat, S., Busquier, S., Third-order iterative methods under Kantorovich conditions,

J. Math. Anal. Appl., 336 (2007), 243–261.

[5] Amat, S., Busquier, S., Gutiérrez, J. M., Third-order iterative methods with appli-

cations to Hammerstein equations: A unified approach, J. App. Math. Comp., 235

(2011), 2936–2943.

[6] Argyros, I.K., A unifying local-semilocal convergence analysis and applications for

two-point Newton-like methods in Banach space, J. Math. Anal. Appl., 298 (2004),

374–397.

[7] Argyros, I.K., An improved unifying convergence analysis of Newton’s method in

Riemannian manifolds, J. App. Math. Comp., 25 (2007), 345–351.

[8] Argyros, I.K., Approximating solutions of equations using Newton’s method with a

modified Newton’s method iterate as a starting point, Rev. Anal. Numér. Théor. Ap-
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Chapter 7

Improved Local Convergence

Analysis of Inexact Gauss-Newton

Like Methods

7.1. Introduction

Let X and Y be Banach spaces. Let D ⊆ X be open set and F : D −→ Y be continuously

differentiable. In this chapter we are concerned with the problem of approximating a locally

unique solution x? of nonlinear least squares problem

min
x∈D

‖ F(x) ‖2 . (7.1.1)

A solution x? ∈ D of (7.1.1) is also called a least squares solution of the equation F(x) = 0.

Many problems from computational sciences and other disciplines can be brought in a

form similar to equation (7.1.1) using mathematical modelling [8], [11]. For example in

data fitting, we have X = R
i, Y = R

j, i is the number of parameters and j is the number of

observations [23].

The solution of (7.1.1) can rarely be found in closed form. That is why the solution

methods for these equations are usually iterative. In particular, the practice of numerical

analysis for finding such solutions is essentially connected to Newton-type methods [8].

The study about convergence matter of iterative procedures is usually centered on two types:

semilocal and local convergence analysis. The semilocal convergence matter is, based on

the information around an initial point, to give criteria ensuring the convergence of iterative

procedures; while the local one is, based on the information around a solution, to find

estimates of the radii of convergence balls. A plethora of sufficient conditions for the local

as well as the semilocal convergence of Newton-type methods as well as an error analysis

for such methods can be found in [1]–[47].

In the present chapter we use the inexact Gauss-Newton like method

xn+1 = xn + sn, B(xn) sn = −F ′(xn)
? F(xn)+ rn for each n = 0,1, · · · , (7.1.2)

where x0 ∈ D is an initial point to generate a sequence {xn} approximating x?. Here, A?

denotes the adjoint of the operator A, B(x)∈L(X ,Y ) the space of bounded linear operators
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from X into Y , is an approximation of the derivative F ′(x)? F ′(x) (x ∈ D); rn is the residual

tolerance and the preconditioning invertible matrix P for the linear systems defining the

step sn satisfy

‖ Pn rn ‖≤ θn ‖ Pn F ′(xn)
? F(xn) ‖ for each n = 0,1, · · · (7.1.3)

If θn = 0 for each n = 0,1, · · ·, the inexact Gauss-Newton method reduces to Gauss-

Newton method. If x? is a solution of (7.1.1), F(x?) = 0 and F ′(x?) is invertible, then the

theories of Gauss-Newton methods merge into those of Newton method. A survey of con-

vergence results under various Lipschitz-type conditions for Gauss-Newton-type methods

can be found in [8] (see also [5]–[15], [17]–[40]). The convergence of these methods re-

quires among other hypotheses that F ′ satisfies a Lipschitz condition or F ′′ is bounded in

D. Several authors have relaxed these hypotheses [9]–[15]. In particular, Ferreira et al.

[24]–[29] have used the majorant condition in the local as well as semilocal convergence of

Newton-type method. Argyros and Hilout [12]–[16] have also used the majorant condition

to provide a tighter convergence analysis and weaker convergence criteria for Newton-type

method. The local convergence of inexact Gauss-Newton method was examined by Fer-

reira et al. [28] using the majorant condition. It was shown that this condition is better that

Wang’s condition [36], [47] in some sence. A certain relationship between the majorant

function and operator F was established that unifies two previously unrelated results per-

taining to inexact Gauss-Newton methods, which are the result for analytical functions and

the one for operators with Lipschitz derivative.

In the present chapter, we are motivated by the elegant work in [28] and optimization

considerations. Using more precise majorant condition and functions, we provide a new

local convergence analysis for inexact Gauss-Newton-like methods under the same compu-

tational cost and the following advantages: larger radius of convergence; tighter error esti-

mates on the distances ‖ xn − x? ‖ for each n = 0,1, · · · and a clearer relationship between

the majorant function and the associated least squares problems (7.1.1). These advantages

are obtained because we use a center-type majorant condition (see (7.3.1)) for the compu-

tation of inverses involved which is more precise that the majorant condition used in [28].

Moreover, these advantages are obtained under the same computational cost, since as we

will see in section 7.3. and section 7.4., the computation of the majorant function requires

the computation of the center-majorant function. Furthemore, these advantages are very

important in computational mathematics, since we have a wider choice of initial guesses x0

and fewer computations to obtain a desired error tolerance on the distances ‖ xn − x? ‖ for

each n = 0,1, · · ·.
The chapter is organized as follows. In order to make the chapter as self contained as

possible, we provide the necessary background in section 7.2.. Section 7.3. contains the

local convergence analysis of inexact Gauss-Newton-like methods. Some proofs are abbre-

viated to avoid repetitions with the corresponding in [28]. Special cases and applications

are given in the concluding section 7.4..

7.2. Background

Let U(x, r) and U(x, r) stand, respectively, for the open and closed ball in X with center x ∈
D and radius r > 0. Let A : X −→ Y be continuous linear and injective with closed image,
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the Moore-Penrose inverse [8], [11], [34] A+ : Y −→ X is defined by A+ = (A? A)−1A?. I
denotes the identity operator on X (or Y ).

Lemma 7.2.1. [8, 11, 35] (Banach’s Lemma) Let A : X −→ X be a continuous linear

operator. If ‖ A−I ‖< 1 then A−1 ∈ L(X ,X ) and ‖ A−1 ‖≤ 1/(1−‖ A−I ‖).

Lemma 7.2.2. [8, ?] Let A,E : X −→ Y be two continuous linear operators with closed

images. Suppose B = A+E, A is injective and ‖ E A+ ‖< 1. Then, B is injective.

Lemma 7.2.3. [8, 11, 35] Let A,E : X −→ Y be two continuous linear operators with

closed images. Suppose B = A+E and ‖ A+ ‖‖E ‖< 1. Then, the following estimates hold

‖ B+ ‖≤ ‖ A+ ‖
1− ‖ A+ ‖‖ E ‖ and ‖ B+−A+ ‖≤

√
2 ‖ A+ ‖2 ‖ E ‖

1− ‖ A+ ‖‖ E ‖ .

Proposition 7.2.4. [34] Let R > 0. Suppose g : [0,R)−→ R is convex. Then, the following

holds

D+g(0) = lim
u→0+

g(u)−g(0)

u
= inf

u>0

g(u)−g(0)

u
.

Proposition 7.2.5. [34] Let R > 0 and θ ∈ [0,1]. Suppose g : [0,R)−→ R is convex. Then,

h : (0,R)−→ R defined by h(t) = (g(t)−g(θt))/t is increasing.

7.3. Local Convergence Analysis

We examine the local convergence of inexact Gauss-Newton-like method. In order for us

to show the main Theorem 7.3.8, we need some auxiliary results. The proofs of some

of the results are omitted, since these proofs can be found in [28] by simply replacing

function f by f0. Assume that x ∈ D −→ F(x)? F(x) has x? as stationarily point. Let R > 0,

c =‖ F(x?) ‖, β =‖ F ′(x?)+ ‖ and

κ = sup{t ∈ [0,R) : U(x?, t)⊆ D}.

Suppose that F ′(x?)? F(x?) = 0, F ′(x?) is injective and there exist functions f0, f :

[0,R)−→ (−∞,+∞) continuously differentiable, such that the following assumptions hold

(H0)

‖ F ′(x)−F ′(x?) ‖≤ f ′0(‖ x−x? ‖)− f ′0(0), (7.3.1)

‖ F ′(x)−F ′(x? +τ(x−x?)) ‖≤ f ′(‖ x−x? ‖)− f ′(τ ‖ x−x? ‖), (7.3.2)

for all x ∈ U(x?,κ) and τ ∈ [0,1];

(H1) f0(0) = f (0) = 0 and f ′0(0) = f ′(0) = −1;

(H2) f ′0, f ′ are strictly increasing,

f0(t)≤ f (t) and f ′0(t)≤ f ′(t) for each t ∈ [0,R);

(H3)

α0 =
√

2cβ2
D+ f ′0(0) < 1.
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Let

0 ≤ ϑ < 1, 0 ≤ ω2 < ω1 such that ω1 (α0 +α0 ϑ+ϑ)+ω2 < 1, (7.3.3)

where α0 is defined in (H3). Define parameters ν0, ρ0 and r0 by

ν0 := sup{t ∈ [0,R) : β( f ′0(t)+1) < 1} (7.3.4)

ρ0 := sup{t ∈ [0,ν0) : (1+ϑ)ω1 β
t f ′(t)− f (t)+

√
2cβ ( f ′0(t)+1)

t (1−β( f ′0(t)+1))
+ω1 ϑ+ω2 < 1}

(7.3.5)

and

r0 := min{κ, ρ0}. (7.3.6)

We provide the following auxiliary lemmas.

Lemma 7.3.1. Suppose that (H0)–(H3) hold. Then, the constant ν0 defined by (7.3.4) is

positive and β( f ′0(t)+1) < 1 for each t ∈ (0,ν0).

Lemma 7.3.2. Suppose that (H0)–(H3) hold. Then, the following real functions hi (i =
1,2,3) defined on (0,R) by

h1(t) =
1

1−β ( f ′0(0)+1)
, h2(t) =

t f ′(t)− f (t)

t2
and h3(t) =

f ′0(t)+1

t

are increasing. Note also that h2 h1 and h3 h1 are increasing on (0,R).

Lemma 7.3.3. Suppose that (H0)–(H3) hold. Then, the constant ρ0 defined by (7.3.5) is

positive and the following holds for each t ∈ (0,ρ0):

(1+ϑ)ω1 β
t f ′(t)− f (t)+

√
2cβ( f ′0(t)+1)

t (1−β( f ′0(t)+1))
+ω1 ϑ+ω2 < 1,

where ϑ, ω1 and ω2 are defined in (7.3.3).

Proof. Using (H1), we have that

lim
t→0

t f ′(t)− f (t)

t (1−β( f ′0(t)+1))
= lim

t→0

f ′(t)− ( f (t)− f (0))/t

1−β ( f ′(t)+1)

1−β( f ′(t)+1)

1−β( f ′0(t)+1)

=
1−β ( f ′(0)+1)

1−β ( f ′0(0)+1)
lim
t→0

f ′(t)− ( f (t)− f (0))/t

1−β ( f ′(t)+1)
= 0.

By the convexity of f ′ and f ′0 and Proposition 7.2.4, we get that

lim
t→0

f ′(t)+1

t (1−β( f ′0(t)+1))
= lim

t→0

( f ′0(t)− f ′0(0))/t

1−β ( f ′0(t)+1)
= D+ f ′0(t).

We deduce that

lim
t→0

(1+ϑ)ω1 β
t f ′(t)− f (t)+

√
2cβ( f ′0(t)+1)

t (1−β ( f ′0(t)+1))
+ω1 ϑ+ω2

= (1+ϑ)ω1 α0 +ω1 ϑ+ω2.
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By (7.3.3), we have that ω1 (α0 +α0 ϑ+ϑ)+ω2 < 1. Then, there exists δ0 such that

(1+ϑ)ω1 β
t f ′(t)− f (t)+

√
2cβ( f ′0(t)+1)

t (1−β( f ′0(t)+1))
+ω1 ϑ+ω2 < 1 for each t ∈ (0,δ0).

The definition of ρ0 gives that δ0 ≤ ρ0. The proof of Lemma 7.3.3 is complete. �

Lemma 7.3.4. Suppose that (H0)–(H3) hold. Then, for each x ∈ D such that x ∈
U(x?,min{ν0,κ}), F ′(x)? F ′(x) is invertible and the following estimates hold

‖ F ′(x)+ ‖≤ β

1−β( f ′0(‖ x−x? ‖)+1)

and

‖ F ′(x)+−F ′(x?)+ ‖≤
√

2β2 ( f ′0(‖ x−x? ‖)+1)

1−β( f ′0(‖ x−x? ‖)+1)
.

In particular, F ′(x)? F ′(x) is invertible in U(x?, r0).

Proof. Since x ∈ D such that x ∈U(x?,min{ν0,κ}), then ‖ x−x? ‖≤ ν0. By Lemma 7.3.1,

(7.3.1) and the definition of β, we have that

‖ F ′(x?)+ ‖‖ F ′(x)−F ′(x?) ‖≤ β( f ′0(‖ x−x? ‖)− f ′0(0)) < 1.

Consider operators A = F ′(x?), B = F ′(x) and E = B − A. Hence, we have that

‖ E A+ ‖≤‖ E ‖‖ A+ ‖< 1. Then, we deduce the desired result by Lemmas 7.2.2 and

Lemma 7.2.3. That completes the proof of Lemma 7.3.4. �

Newton’s iteration at a point is a zero of the linearization of F at such a point. Hence,

we shall study the linearization error at a point in D:

EF(x,y) := F(y)− (F(x)+F ′(x) (x−y)) for each x,y ∈ D. (7.3.7)

We shall bound this error by the error in linearization of the majorant function f :

e f (t,u) := f (u)− ( f (t)+ f ′(t) (u− t)) for each t,u ∈ [0,R). (7.3.8)

Define also the Gauss-Newton step to the operator F by

SF(x) = −F ′(x)+ F(x) for each x ∈ D. (7.3.9)

Lemma 7.3.5. Suppose that (H0)–(H3) hold. If ‖ x? −x ‖< κ, then the following assertion

holds

‖ EF(x,x?) ‖≤ e f (‖ x−x? ‖,0).

Lemma 7.3.6. Suppose that (H0)–(H3) hold. Then, for each x ∈ D such that x ∈
U(x?,min{ν0,κ}), the following estimate holds

‖ SF(x) ‖≤ βe f (‖ x−x? ‖,0)+
√

2cβ2 ( f ′0(‖ x−x? ‖)+1)

1−β( f ′0(‖ x−x? ‖)+1)
+ ‖ x−x? ‖ .
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Proof. Let x ∈ D such that x ∈ U(x?,min{ν0,κ}). Using (7.3.7) and (7.3.9), we have that

‖ SF(x) ‖
=‖ F ′(x)+ (F(x?)− (F(x)−F ′(x) (x?−x)))− (F ′(x)+−F ′(x?)+)F(x?)+(x?−x) ‖
≤‖ F ′(x)+ ‖‖ EF(x,x?) ‖+ ‖ F ′(x)+−F ′(x?)+ ‖‖ F(x?) ‖+ ‖ x?−x ‖ .

Then, we deduce the desired result by Lemmas 7.3.4 and Lemma 7.3.5. That completes the

proof of Lemma 7.3.6. �

Lemma 7.3.7. Let parameters ϑ, ω1 and ω2 defined by (7.3.3). Let ν0, ρ0 and r0 as defined

in (7.3.4), (7.3.5) and (7.3.6), respectively. Suppose that (H0)–(H3) hold. For each x ∈
U(x?, r0)\{x?}, define

x+ = x+ s, B(x) s = −F ′(x)? F(x)+ r, (7.3.10)

where B(x) is an invertible approximation of F ′(x)? F(x) satisfying

‖ B(x)−1 F ′(x)? F ′(x) ‖≤ ω1, ‖ B(x)−1 F ′(x)? F ′(x)−I ‖≤ ω2. (7.3.11)

Suppose also that the forcing term θ and the residuals r (as defined in (7.1.3)) satisfy

‖ P r ‖≤ θ ‖ P F ′(x)? F(x) ‖ and θcond(P F ′(x)? F ′(x))≤ ϑ. (7.3.12)

Then, x+ is well defined and the following estimate holds

‖ x+−x? ‖≤ (1+ϑ)ω1 β
f ′(‖ x? −x ‖) ‖ x?−x ‖ − f (‖ x?−x ‖)
‖ x?−x ‖2 (1−β( f ′0(‖ x?−x ‖)+1))

‖ x?−x ‖2 +
(

(1+ϑ)ω1

√
2cβ2 ( f ′0(‖ x−x? ‖)+1)

‖ x? −x ‖ (1−β( f ′0(‖ x−x? ‖)+1))
+ω1 ϑ+ω2

)
‖ x?−x ‖ .

(7.3.13)

In particular, ‖ x+−x? ‖<‖ x?−x ‖.

Proof. By Lemma 7.3.4 and since x ∈U(x?, r0), we have that F ′(x)? F ′(x) is invertible. In

view of (7.1.2) and (7.3.10), we obtain the identity

x+−x? = x−x? −B(x)−1 F ′(x)? (F(x)−F(x?))+B(x)−1 r+

B(x)−1 F ′(x)? F ′(x) (F′(x?)+ F(x?)−F ′(x)+ F(x?))
= B(x)−1 F ′(x)? F ′(x)F ′(x)+ (F(x?)− (F(x)+F ′(x) (x?−x)))+

B(x)−1 r +B(x)−1 (F ′(x)? F ′(x)−B(x)) (x−x?)+
B(x)−1 F ′(x)? F ′(x) (F′(x?)+ F(x?)−F ′(x)+ F(x?)).

(7.3.14)

Using (7.3.7), (7.3.9), (7.3.11), (7.3.12) and (7.3.14), we get that

‖ x+−x? ‖ ≤ ω1 ‖ F ′(x)+ ‖‖ EF(x,x?) ‖ + ‖ B(x)−1 r ‖+ω2 ‖ x? −x ‖ +
ω1 ‖ F ′(x)+−F ′(x?)+ ‖‖ F(x?) ‖

≤ ω1 ‖ F ′(x)+ ‖‖ EF(x,x?) ‖ +ω1 ϑ ‖ SF(x) ‖ +
ω2 ‖ x?−x ‖ +ω1 ‖ F ′(x)+−F ′(x?)+ ‖‖ F(x?) ‖ .

(7.3.15)
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Using (7.3.8), (7.3.15) and Lemmas 7.3.4–7.3.6, we deduce that

‖ x+−x? ‖≤ (1+ϑ)βω1

e f (‖ x−x? ‖,0)+
√

2cβ ( f ′0(‖ x−x? ‖)+1)

1−β ( f ′0(‖ x−x? ‖)+1)
+

ω1 ϑ ‖ x−x? ‖ +ω2 ‖ x? −x ‖

≤ (1+ϑ)βω1

f ′(‖ x−x? ‖) ‖ x−x? ‖ − f (‖ x−x? ‖)+
√

2cβ( f ′0(‖ x−x? ‖)+1)

1−β ( f ′0(‖ x−x? ‖)+1)
+ω1 ϑ ‖ x−x? ‖+ω2 ‖ x?−x ‖ .

(7.3.16)

Hence, (7.3.13) holds. Note that if we factorize by ‖ x? − x ‖ in the right term in (7.3.13),

then, we deduce that ‖ x+−x? ‖<‖ x?−x ‖. The proof of Lemma 7.3.7 is complete. �

Next, we provide the main local convergence result for inexact Gauss-Newton-like

method.

Theorem 7.3.8. Let F : D ⊆ X −→ Y be a continuously differentiable operator. Let pa-

rameters ϑ, ω1 and ω2 defined by (7.3.3). Let ν0, ρ0 and r0 as defined in (7.3.4), (7.3.5)

and (7.3.6), respectively. Suppose that (H0)–(H3) hold. Then, sequence {xn} generated by

(7.1.2), starting at x0 ∈ U(x?, r0) \ {x?} for the the forcing term θn, the residual rn and the

invertible preconditioning matrix Pn satisfying the following estimates for each n = 0,1, · · ·:

‖ Pn rn ‖≤ θn ‖ Pn F ′(xn)
? F(xn) ‖, 0 ≤ θn cond(PnF ′(xn)

? F ′(xn))≤ ϑ,

‖ B(xn)
−1 F ′(xn)

? F ′(xn) ‖≤ ω1 and ‖ B(xn)
−1 F ′(xn)

? F ′(xn)−I ‖≤ ω2

is well defined, remains in U(x?, r0) for all n ≥ 0 and converges to x?. Moreover, the

following estimate holds for each n = 0,1, · · ·

‖ xn+1−x? ‖≤ Ξn ‖ xn −x? ‖, (7.3.17)

where

Ξn = (1+ϑ)ω1 β
f ′(‖ x?−x0 ‖) ‖ x?−x0 ‖ − f (‖ x?−x0 ‖)
‖ x?−x0 ‖2 (1−β( f ′0(‖ x?−x0 ‖)+1))

‖ x?−xn ‖ +

(1+ϑ)ω1

√
2cβ2 ( f ′0(‖ x0 −x? ‖)+1)

‖ x? −x0 ‖ (1−β( f ′0(‖ x0 −x? ‖)+1))
+ω1 ϑ+ω2.

Proof. By induction argument, Lemmas 7.3.4 and 7.3.7, {xn} starting at x0 ∈ U(x?, r0) \
{x?} is well defined in U(x?, r0). By letting x+ = xn+1, x = xn, r = rn, P = Pn, θ = θn and

P = Pn in (7.3.10)–(7.3.12), we get that

‖ xn+1−x? ‖≤
(1+ϑ)ω1 β

f ′(‖ x? −xn ‖) ‖ x?−xn ‖ − f (‖ x?−xn ‖)
‖ x?−xn ‖2 (1−β( f ′0(‖ x? −xn ‖)+1))

‖ x? −xn ‖2 +
(

(1+ϑ)ω1

√
2cβ2 ( f ′0(‖ xn −x? ‖)+1)

‖ x? −xn ‖ (1−β( f ′0(‖ xn −x? ‖)+1))
+ω1 ϑ+ω2

)
‖ x?−xn ‖ .

We also have by Lemma 7.3.7 that ‖ xn − x? ‖≤‖ x0 − x? ‖ for each n = 1,2, · · ·. Hence,

(7.3.17) holds. Proposition 7.3.3 imply that xn+1 ∈ U(x?, r0) and lim
n−→∞

xn = x?. The proof

of Theorem 7.3.8 is complete. �
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Remark 7.3.9. If f (t) = f0(t) for each t ∈ [0,R), then, Theorem 7.3.8 reduces to [28,

Theorem 7]. In particular, we have in this case that ν = ν0, ρ = ρ0, δ = δ0, α = α0, r = r0

and D+ f (0) = D+ f0(0), where ν, ρ, δ, α, r and D+ f (0) are defined, respectively, as ν0,

ρ0, δ0, α0, r0 and D+ f0(0) by setting f0(t) = f (t). Otherwise, i.e., if

f0(t) < f (t) and f ′0(t) < f ′(t) f or each t ∈ [0,R), (7.3.18)

then, we have that

ν ≥ ν0, ρ ≤ ρ0, δ ≤ δ0, α ≥ α0, r ≤ r0 and D+ f (0)≥ D+ f0(0). (7.3.19)

Note that these advantages are obtained under the same computational cost, since in prac-

tice, the computation of function f requires that of f0. Note also that the local results in

[18], [19], [24]–[27] are also extended, since these are special cases of Theorem 7.3.8. In

particular, if ϑ = 0 (i.e., if θn = rn = 0 for each n = 0,1, · · ·) in Theorem 7.3.8, we improve

the convergence of Gauss-Newton like method under majorant condition, which for ω1 = 1

and ω2 = 0 has been obtained in [26, Theorem 7]. These results extend those the ones ob-

tained by Chen and Li in [18], [19] given only for the the case c = 0. Moreover, if c = 0 and

F ′(x?) is invertible, we extend the convergence of inexact Newton-like methods under ma-

jorant condition, which was obtained in [24, Theorem 4]. Furthemore, if c = ϑ = ω2 = 0,

ω1 = 1 and F ′(x?) is invertible in Theorem 7.3.8, we extend the convergence of Newton’s

method under majorant condition obtained in [24, Theorem 2.1].

In the next section, we shall show how to choose functions f0 and f so that (7.3.18) is

satisfied.

7.4. Special Case and Numerical Examples

We present two special cases of Theorem 7.3.8. The first one is based on the center-

Lipschitz and Lipschitz conditions [8], [11]. The second one is based on Wang’s condition

[47], which generalized Smale’s alpha theory for analytic functions [44].

Remark 7.4.1. Let us define functions f , f0 : [0,κ] −→ R by

f0(t) =
L0 t2

2
− t and f (t) =

Lt2

2
− t,

where L0 and L are the center-Lipschitz and Lipschitz constants, respectively. We have that

f0(0) = f (0) = 0 and f ′0(0) = f ′(0) = −1. Set also R = 1/L. Then, it can easily be seen

that Theorem 7.3.8 specializes to the following proposition.

Proposition 7.4.2. Let F : D ⊂ X −→ Y be continuously differentiable operator. Let

x? ∈ D, such that F ′(x?)? F(x?) = 0, F ′(x?) is injective. Let c =‖ F(x?) ‖, β =‖ F ′(x?)+ ‖
and κ = sup{t ≥ 0 : U(x?, t)⊆ D}. Suppose that there exist L0 > 0, L > 0 such that

‖ F ′(x)−F ′(x?) ‖≤ L0 ‖ x−x? ‖ and ‖ F ′(x)−F ′(y) ‖≤ L ‖ x−y ‖,
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for each x,y ∈ U(x?,κ). Suppose that α0 =
√

2cβ2
L < 1. Let parameters ϑ, ω1 and ω2

defined by (7.3.3). Let

r0 = min{κ,
2(1−ω1 ϑ−ω2)−2

√
2cL0 β2 ω1 (1+ϑ)

β(L(1+ϑ)ω1 +2L0 (1−ω1 ϑ−ω2))
}.

Then, sequence {xn} generated by (7.1.2) with rn = 0 and B(xn) = F ′(xn)
? F ′(xn), starting

at x0 ∈U(x?, r0)\{x?} for the the forcing term θn and the invertible preconditioning matrix

Pn satisfying the following estimates for each n = 0,1, · · ·:

‖ Pn rn ‖≤ θn ‖ Pn F ′(xn)
? F(xn) ‖, 0 ≤ θn cond(PnF ′(xn)

? F ′(xn))≤ ϑ,

‖ B(xn)
−1 F ′(xn)

? F ′(xn) ‖≤ ω1 and ‖ B(xn)
−1 F ′(xn)

? F ′(xn)−I ‖≤ ω2

is well defined, remains in U(x?, r0) for all n ≥ 0 and converges to x?. Moreover, the

following estimate holds for each n = 0,1, · · ·

‖ xn+1 −x? ‖≤ ∆n ‖ xn −x? ‖, (7.4.1)

where

∆n =
(1+ϑ)ω1 βL

2(1−βL0 ‖ x0 −x? ‖) ‖ x?−xn ‖ +
(1+ϑ)ω1

√
2cβ2

L0

1−βL0 ‖ x0 −x? ‖ +ω1 ϑ+ω2.

Remark 7.4.3. (a) If L0 = L, Proposition 7.4.2 reduces to [28, Theorem 16]. Moreover,

if ϑ = 0, Proposition 7.4.2 reduces to [28, Corollary 17]. Furthemore, if c = 0, then,

Proposition 7.4.2 reduces to [19, Corollary 6.1].

(b) If F(x?) = 0, F ′(x?)+ = F ′(x?)−1 and L0 < L, then Theorem 7.3.8 improves the corre-

sponding results on inexact Newton-like methods [30], [33], [37], [38]. In particular

for Newton’s method. Set c = ϑ = ω1 = ω2 = 0. Then, we get that

r0 = min{κ,
2

β(2L0 +L)
}.

This radius is at least as large as the one provided by Traub [46], which is given by

r0
0 = min{κ,

2

3βL
}.

Let us provide a numerical example for this case.

Example 7.4.4. Let X = Y = C [0,1], the space of continuous functions defined on [0,1] be

equipped with the max norm and D = U(0,1). Define function F on D by

F(h)(x) = h(x)−5

Z 1

0
xθh(θ)3 dθ. (7.4.2)

Then, we have that

F ′(h[u])(x) = u(x)−15

Z 1

0
xθh(θ)2 u(θ)dθ f or each u ∈ D.
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Using Proposition 7.4.2, we see that the hypotheses hold for x?(x) = 0, where x ∈ [0,1],

β = 1, L = 15 and L0 = 7.5. Then, we get that

r0
0 = min{κ,

2

45
} ≤ min{κ,

1

15
}= r0.

Clearly, if min{κ,
2

45
} =

2

45
, then we deduce in particular that r0

0 < r0.

Remark 7.4.5. Let γ ≥ γ0. Let us define functions f , f0 : [0,κ]−→ R by

f0(t) =
t

1− γ0 t
−2 t and f (t) =

t

1− γ t
−2 t.

Then, we have that f0(0) = f (0) = 0, f ′0(0) = f ′(0) = −1. Set also R = 1/γ. Note also that

f ′0(t) =
1

(1− γ0 t)2
−2, f ′(t) =

1

(1− γ t)2
−2,

f ′′0 (t) =
2γ0

(1− γ0 t)3
and f ′′(t) =

2γ

(1− γ t)3
.

We introduce the definition of the center γ0-condition.

Definition 7.4.6. Let γ0 > 0 and let 0 < µ ≤ 1/γ0 be such that U(x?,µ)⊆ D. The operator

F is said to satisfy the center γ0-condition at x? on U(x?,µ) if

‖ F ′(x)−F ′(x?) ‖≤ 1

(1− γ0 ‖ x−x? ‖)2
−1 f or each x ∈ U(x?,µ).

We also need the definition of γ-condition due to Wang [47].

Definition 7.4.7. Let γ > 0 and let 0 < µ ≤ 1/γ be such that U(x?,µ) ⊆ D. The operator F

is said to satisfy the γ-condition at x? on U(x?,µ) if

‖ F ′′(x) ‖≤ 2γ

(1− γ ‖ x−x? ‖)3
f or each x ∈U(x?,µ).

Remark 7.4.8. (a) Note that γ0 ≤ γ holds in general and γ/γ0 can be arbitrarily large

[7]–[16].

(b) If F is an analytic function, Smale [44] used the following choice

γ = sup
n∈N?

‖ F (n)(x?)

n!
‖ 1

n < +∞.

Using the above definitions and choices of functions (see Remark 7.4.5, Definitions

7.4.6 and 7.4.7), the corresponding specialization of Theorem 7.3.8 along the lines

of Proposition 7.4.2 can be obtained. However, we leave this part to the interested

reader. Note that clearly if γ0 = γ, this result reduces to [28, Theorem 18], which in

turn reduces to [19, Example 1] if c = 0. Otherwise (i.e., if γ0 < γ), our result is an

improvement.

Next, we provide an example, where γ0 < γ in the case when F(x?) = 0, F ′(x)+ =

F ′(x)−1 and c = ϑ = ω1 = ω2 = 0.
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Chapter 8

Expending the Applicability of

Lavrentiev Regularization Methods

for Ill-Posed Problems

8.1. Introduction

In this chapter, we are interested in obtaining a stable approximate solution for a nonlin-

ear ill-posed operator equation of the form

F(x) = y, (8.1.1)

where F : D(F) ⊂ X → X is a monotone operator and X is a Hilbert space. We denote the

inner product and the corresponding norm on a Hilbert space by 〈·, ·〉 and ‖ · ‖, respectively.

Let U(x, r) stand for the open ball in X with center x ∈ X and radius r > 0. Note that F is a

monotone operator if it satisfies the relation

〈F(x1)−F(x2),x1 −x2〉 ≥ 0 (8.1.2)

for all x1,x2 ∈ D(F).

We assume, throughout this chapter, that yδ ∈ Y is the available noisy data with

‖y−yδ‖ ≤ δ (8.1.3)

and (8.1.1) has a solution x̂. Since (8.1.1) is ill-posed, its solution need not depend con-

tinuously on the data, i.e., small perturbation in the data can cause large deviations in the

solution. So the regularization methods are used ([9, 10, 11, 13, 14, 17, 19, 20]). Since F is

monotone, the Lavrentiev regularization is used to obtain a stable approximate solution of

(8.1.1). In the Lavrentiev regularization, the approximate solution is obtained as a solution

of the equation

F(x)+α(x−x0) = yδ, (8.1.4)

where α > 0 is the regularization parameter and x0 is an initial guess for the solution x̂.
In [8], Bakushinskii and Seminova proposed an iterative method

xδ
k+1 = xδ

k − (αkI +Ak,δ)
−1[(F(xδ

k)−yδ)+αk(xδ
k −x0)],xδ

0 = x0, (8.1.5)
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where Ak,δ := F ′(xδ
k) and (αk) is a sequence of positive real numbers satisfying αk → 0 as

k → ∞. It is important to stop the iteration at an appropriate step, say k = kδ, and show that

xk is well defined for 0 < k ≤ kδ and xδ
kδ
→ x̂ as δ → 0 (see [15]).

In [6]-[8], Bakushinskii and Seminova chose the stopping index kδ by requiring it to

satisfy

‖F(xδ
kδ

)−yδ‖2 ≤ τδ < ‖F(xδ
k)−yδ‖

for k = 0,1, · · · and kδ − 1,τ > 1. In fact, they showed that xδ
kδ
→ x̂ as δ → 0 under the

following assumptions:

(1) There exists L > 0 such that ‖F ′(x)−F ′(y)‖ ≤ L‖x−y‖ for all x,y ∈ D(F);

(2) There exists p > 0 such that

αk −αk+1

αkαk+1

≤ p (8.1.6)

for all k ∈ N;

(3)
√

(2+Lσ)‖x0 − x̂‖td ≤ σ−2‖x0 − x̂‖t ≤ dα0, where

σ := (
√

τ−1)2, t := pα0 +1, d = 2(t‖x0− x̂‖+ pσ).

However, no the error estimate was given in [8] (see [15]).

In [15], Mahale and Nair, motivated by the work of Qi-Nian Jin [12] for an iteratively

regularized Gauss-Newton method, considered an alternate stopping criterion which not

only ensures the convergence, but also derives an order optimal error estimate under a gen-

eral source condition on x̂ − x0. Moreover, the condition that they imposed on {αk} is

weaker than (8.1.6).

In the present chapter, we are motivated by [15]. In particular, we expand the applica-

bility of the method (8.1.5) by weakening one of the major hypotheses in [15] (see below

Assumption 8.2.1 (ii) in the next section).

In Section 8.2, we consider some basic assumptions required throughout the chapter.

Section 8.3 deals with the stopping rule and a result that establishes the existence of the

stopping index. In Section 8.4, we prove results for the iterations based on the exact data

and, in Section 8.5, the error analysis for the noisy data case is proved. The main order

optimal result using the a posteriori stopping rule is provided in Section 8.6.

8.2. Basic Assumptions and Some Preliminary Results

We use the following assumptions to prove the results in this chapter.

Assumption 8.2.1. (1) There exists r > 0 such that U(x̂, r)⊆ D(F) and F : U(x̂, r)→ X is

Fréchet differentiable.

(2) There exists K0 > 0 such that, for all uθ = u + θ(x̂− u) ∈ U(x̂, r), θ ∈ [0,1] and

v ∈ X , there exists an element, say φ(x̂,uθ,v) ∈ X , satisfying

[F ′(x̂)−F ′(uθ)]v = F ′(uθ)φ(x̂,uθ,v), ‖φ(x̂,uθ,v)‖ ≤ K0‖v‖‖x̂−uθ‖
for all uθ ∈ U(x̂, r) and v ∈ X .

(3) ‖F ′(u)+αI)−1F ′(uθ)‖ ≤ 1 for all uθ ∈ U(x̂, r).

(4) ‖(F′(u)+αI)−1‖ ≤ 1
α for all uθ ∈U(x̂, r).
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The condition (2) in Assumption 8.2.1 weakens the popular hypotheses given in [15],

[16] and [18].

Assumption 8.2.2. There exists a constant K > 0 such that, for all x,y ∈U(x̂, r) and v ∈ X ,
there exists an element denoted by P(x,u,v) ∈ X satisfying

[F ′(x)−F ′(u)]v = F ′(u)P(x,u,v), ‖P(x,u,v)‖≤ K‖v‖‖x−u‖.

Clearly, Assumption 8.2.2 implies Assumption 8.2.1 (2) with K0 = K, but not neces-

sarily vice versa. Note that K0 ≤ K holds in general and K0

K
can be arbitrarily large [1]-[5].

Indeed, there are many classes of operators satisfying Assumption 8.2.1 (2), but not As-

sumption 8.2.2 (see the numerical examples at the end of this chapter). Moreover, if K0

is sufficiently smaller than K which can happen since K
K0

can be arbitrarily large, then the

results obtained in this chapter provide a tighter error analysis than the one in [15].

Finally, note that the computation of constant K is more expensive than the computation

of K0.

We need the auxiliary results based on Assumption 8.2.1.

Proposition 8.2.3. For any u ∈U(x̂, r) and α > 0,

‖(F ′(u)+αI)−1[F(x̂)−F(u)−F ′(u)(x̂−u)‖ ≤ 3K0

2
‖x̂−u‖2.

Proof. Using the fundamental theorem of integration, for any u ∈U(x̂, r), we get

F(x̂)−F(u) =

Z 1

0
F ′(u+ t(x̂−u))(x̂−u)dt.

Hence, by Assumption 8.2.2,

F(x̂)−F(u)−F ′(u)(x̂−u)

=

Z 1

0
[F ′(u+ t(x̂−u))−F ′(x̂)+F ′(x̂)−F ′(u)](x̂−u)dt

=

Z 1

0
F ′(x̂)[φ(u+ t(x̂−u), x̂, x̂−u)−φ(u, x̂, x̂−u)]dt.

Then, by (2), (3) in Assumptions 8.2.1 and the inequality ‖(F ′(u)+αI)−1F ′(uθ)‖ ≤ 1, we

obtain in turn

‖(F ′(u)+αI)−1[F(x̂)−F(u)−F ′(u)(x̂−u)‖

≤
Z 1

0
‖φ(u+ t(x̂−u), x̂, x̂−u)+φ(u, x̂, x̂−u)‖dt.

≤
Z 1

0
K0‖x̂−u‖2tdt +K0‖x̂−u‖2

≤ 3K0

2
‖x̂−u‖2.

This completes the proof.
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Proposition 8.2.4. For any u ∈U(x̂, r) and α > 0,

α‖(F ′(x̂)+αI)−1 − (F ′(u)+αI)−1‖ ≤ K0‖x̂−u‖. (8.2.1)

Proof. Let Tx̂,u = α(F ′(x̂) + αI)−1 − (F ′(u)+ αI)−1) for all v ∈ X . Then we have, by

Assumption 8.2.2,

‖Tx̂,uv‖ = ‖α(F ′(x̂)+αI)−1(F ′(u)−F ′(x̂)(F ′(u)+αI)−1)v‖
= ‖(F ′(x̂)+αI)−1F ′(x̂)φ(u, x̂,α(F ′(u)+αI)−1v)‖
≤ K0‖x̂−u‖‖v‖

for all v ∈ X . This completes the proof.

Assumption 8.2.5. There exists a continuous and strictly monotonically increasing func-

tion ϕ : (0,a]→ (0,∞) with a ≥ ‖F ′(x̂)‖ satisfying

(1) limλ→0 ϕ(λ) = 0;

(2) supλ≥0
αϕ(λ)
λ+α ≤ ϕ(α) for all α ∈ (0,a];

(3) there exists v ∈ X with ‖v‖ ≤ 1 such that

x̂−x0 = ϕ(F ′(x̂))v. (8.2.2)

Next, we assume a condition on the sequence {αk} considered in (8.1.5).

Assumption 8.2.6. ([15], Assumption 2.6) The sequence {αk} of positive real numbers is

such that

1 ≤ αk

αk+1

≤ µ, lim
k→0

αk = 0 (8.2.3)

for a constant µ > 1.

Note that the condition (8.2.3) on {αk} is weaker than (8.1.6) considered by Bakunshin-

skii and Smirnova [8] (see [15]). In fact, if (8.1.6) is satisfied, then it also satisfies (8.2.3)

with µ = pα0 +1, but the converse need not be true (see [15]). Further, note that, for these

choices of {αk}, αk/αk+1 is bounded whereas (αk −αk+1)/αkαk+1 → ∞ as k → ∞. (2) in

Assumption 8.2.1 is used in the literature for regularization of many nonlinear ill-posed

problems (see [12], [13], [19]-[21]).

8.3. Stopping Rule

Let c0 > 4 and choose kδ to be the first non-negative integer such that xδ
k

in (8.1.5) is

defined for each k ∈ {0,1,2, · · · ,kδ} and

‖αkδ
(Aδ

kδ
+αkδ

I)−1(F(xδ
kδ

)−yδ)‖ ≤ c0δ. (8.3.1)

In the following, we establish the existence of such a kδ. First, we consider the positive

integer N ∈ N satisfying

αN ≤ (c−1)δ

‖x0 − x̂‖ < αk (8.3.2)
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for all k ∈ {0,1, · · · ,N −1}, where c > 1 and α0 > (c−1)δ/‖x0− x̂‖.
The following technical lemma from [15] is used to prove some of the results of this

chapter.

Lemma 8.3.1. ([15], Lemma 3.1) Let a > 0 and b ≥ 0 be such that 4ab ≤ 1 and θ :=

(1−
√

1−4ab)/2a. Let θ1, · · · ,θn be non-negative real numbers such that θk+1 ≤ aθ2
k + b

and θ0 ≤ θ. Then θk ≤ θ for all k = 1,2, · · · ,n.

The rest of the results in this chapter can be proved along the same lines of the proof in

[15]. In order for us to make the chapter is a self contained as possible we present the proof

of one of them and for the proof of the rest we refer the reader to [15].

Theorem 8.3.2. ([15], Theorem 3.2) Let (8.1.2), (8.1.3), (8.2.3) and Assumption 8.2.1 be

satisfied. Let N be as in (8.3.2) for some c > 1 and 6cK0‖x0 − x̂‖/(c−1) ≤ 1. Then xδ
k is

defined iteratively for each k ∈ {0,1, · · · ,N} and

‖xδ
k − x̂‖ ≤ 2c‖x0 − x̂‖

c−1
(8.3.3)

for all k ∈ {0,1, · · · ,N}. In particular, if r > 2c‖x0 − x̂‖/(c−1), then xδ
k
∈ Br(x̂) for k ∈

{0,1, · · · ,N}. Moreover,

‖αN(Aδ
N +αNI)−1(F(xδ

N)−yδ)‖ ≤ c0δ (8.3.4)

for c0 := 7
3
c+1.

Proof. We show (8.3.3) by induction. It is obvious that (8.3.3) holds for k = 0. Now, assume

that (8.3.3) holds for some k ∈ {0,1, · · · ,N}. Then it follows from (8.1.5) that

xδ
k+1− x̂

= xδ
k − x̂− (Aδ

k +αkI)−1[F(xδ
k)−yδ +αk(xδ

k −x0)]

= (Aδ
k +αkI)−1((Aδ

k +αkI)(xδ
k − x̂)− [F(xδ

k)−yδ +αk(xδ
k −x0)])

= (Aδ
k +αkI)−1[Aδ

k(xδ
k − x̂)+yδ −F(xδ

k)+αk(x0 − x̂)]

= αk(Aδ
k +αkI)−1(x0− x̂)+(Aδ

k +αkI)−1(yδ −y) (8.3.5)

+(Aδ
k +αkI)−1[F(x̂)−F(xδ

k)+Aδ
k(xδ

k − x̂)]

Using (8.1.3), the estimates ‖(Aδ
k +αkI)−1‖≤ 1/αk, ‖(Aδ

k +αkI)−1Aδ
k‖ ≤ 1 and Proposition

8.2.3, we have

‖αk(Aδ
k +αkI)−1(x0 − x̂)+(Aδ

k +αkI)−1(yδ−y)‖ ≤ ‖x0 − x̂‖+
δ

αk

and

‖(Aδ
k +αkI)−1[F(x̂)−F(xδ

k)+Aδ
k(xδ

k − x̂)]‖ ≤ 3K0

2
‖xδ

k − x̂‖2.

Thus we have

‖xδ
k+1− x̂‖ ≤ ‖x0 − x̂‖+

δ

αk

+
3K0

2
‖xδ

k − x̂‖2.
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But, by (8.3.2), δ
αk

≤ ‖x0 − x̂‖/(c−1) and so

‖xδ
k+1− x̂‖ ≤ c‖x0 − x̂‖

c−1
+

3K0

2
‖xδ

k − x̂‖2,

which leads to the recurrence relation

θk+1 ≤ aθ2
k +b,

where

θk = ‖xδ
k − x̂‖, a =

3K0

2
, b =

c‖x0 − x̂‖
c−1

.

From the hypothesis of the theorem, we have 4ab = 6cK0
‖x0−x̂‖

c−1
< 1. It is obvious that

θ0 ≤ ‖x0 − x̂‖ ≤ θ :=
1−

√
1−4ab

2a
=

2b

1+
√

1−4ab
≤ 2b =

2c‖x0 − x̂‖
c−1

.

Hence, by Lemma 8.3.1, we get

‖xδ
k − x̂‖ ≤ θ ≤ 2c‖x0 − x̂‖

c−1
(8.3.6)

for all k ∈ {0,1, · · · ,N}. In particular, if r > 2c‖x0 − x̂‖/(c−1), then we have xδ
k ∈ Br(x̂)

for all k ∈ {0,1, · · · ,N}.
Next, let γ = ‖αN(Aδ

N +αNI)−1(F(xδ
N)−yδ)‖. Then, using the estimates

‖αN(Aδ
N +αNI)−1‖ ≤ 1, ‖αN(Aδ

N +αNI)−1Aδ
N‖ ≤ αk

and Proposition 8.2.3, we have

γ

≤ δ+‖αN(Aδ
N +αNI)−1(F(xδ

N)−y+Aδ
N (xδ

N − x̂)−Aδ
N(xδ

N − x̂))‖
= δ+‖αN(Aδ

N +αNI)−1[F(xδ
N)−F(x̂)−Aδ

N(xδ
N − x̂)+Aδ

N(xδ
N − x̂)]‖

≤ δ+αN [3K0

‖xδ
N − x̂‖2

2
+‖xδ

N − x̂‖]

≤ δ+αN‖xδ
N − x̂‖[1+3K0

‖xδ
N − x̂‖

2
] (8.3.7)

≤ δ+
2αNc‖xδ

0 − x̂‖
c−1

[1+
3K0c‖xδ

0 − x̂‖
c−1

] ≤ δ+2cδ[1+
1

6
]≤ (

7c

3
+1)δ.

Therefore, we have ‖αN(Aδ
N +αNI)−1(F(xδ

N)−yδ)‖ ≤ c0δ, where c0 := 7
3
c+1. This com-

pletes the proof.
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8.4. Error Bound for the Case of Noise-Free Data

Let

xk+1 = xk − (Ak +αkI)−1[F(xk)−y+αk(xk −x0)] (8.4.1)

for all k ≥ 0.

We show that each xk is well defined and belongs to U(x̂, r) for r > 2‖x0 − x̂‖. For this,

we make use of the following lemma.

Lemma 8.4.1. ([15], Lemma 4.1) Let Assumption 8.2.1 hold. Suppose that, for all k ∈
{0,1, · · · ,n}, xk in (8.4.1) is well defined and ρk := ‖αk(Ak + αkI)−1(x0 − x̂)‖ for some

n ∈ N. Then we have

ρk −
3K0‖xk − x̂‖2

2
≤ ‖xk+1− x̂‖ ≤ ρk +

3K0‖xk − x̂‖2

2
(8.4.2)

for all k ∈ {0,1, · · · ,n}.

Theorem 8.4.2. ([15], Theorem 4.2) Let Assumption 8.2.1 hold. If 6K0‖x0 − x̂‖ ≤ 1 and

r > 2‖x0 − x̂‖, then, for all k ∈ N, the iterates xk in (8.4.1) are well defined and

‖xk − x̂‖ ≤ 2‖x0 − x̂‖
1+
√

1−6K0‖x0 − x̂‖
≤ 2‖x0 − x̂‖ (8.4.3)

for all k ∈ N.

Lemma 8.4.3. ([15], Lemma 4.3) Let Assumptions 8.2.1 and 8.2.6 hold and let r > 2‖x0 −
x̂‖. Assume that ‖A‖ ≤ ηα0 and 4µ(1 + η−1)K0‖x0 − x̂‖ ≤ 1 for some η with 0 < η < 1.

Then, for all k ∈ N, we have

1

(1+η)µ
‖xk − x̂‖ ≤ ‖αk(Ak +αkI)−1(x0 − x̂)‖ ≤ 1

1−η
‖xk − x̂‖ (8.4.4)

and
1−η

(1+η)µ
‖xk − x̂‖ ≤ ‖(xk+1− x̂)‖ ≤ (

1

1−η
+

η

(1+η)µ
)‖xk − x̂‖. (8.4.5)

The following corollary follows from Lemma 8.4.3 by taking η = 1/3. We show that

this particular case of Lemma 8.4.3 is better suited for our later results.

Corollary 8.4.4. ([15], Corollary 4.4) Let Assumptions 8.2.1 and 8.2.6 hold and let r >

2‖x0 − x̂‖. Assume that ‖A‖ ≤ α0/3 and 16µK0‖x0 − x̂‖ ≤ 1. Then, for all k ∈ N, we have

3

4µ
‖xk − x̂‖ ≤ ‖αk(A+αkI)−1(x0 − x̂)‖ ≤ 3

2
‖xk − x̂‖ (8.4.6)

and
‖xk − x̂‖

2µ
≤ ‖(xk+1− x̂)‖ ≤ 2‖xk − x̂‖.
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Theorem 8.4.5. ([15], Theorem 4.5) Let the Assumptions of Lemma 8.4.3 hold. If x0 is

chosen such that x0 − x̂ ∈ N(F ′(x̂))⊥, then limk→∞ xk = x̂.

Lemma 8.4.6. ([15], Lemma 4.6) Let the assumptions of Lemma 8.4.3 hold for η satisfying

(1−
√

1− η

(1+η)µ
)[1+(2µ−1)η+2µ]+2η <

4

3
. (8.4.7)

Then, for all k, l ∈ NU{0} with k ≥ l, we have

‖xl − x̂‖ ≤ cη

[
‖xk − x̂‖+

‖αl(A+αlI)
−1(F(xl)−y)‖
αk

]
,

where

cη := (1−bη)−1 max
{

µ,1+
(3ε+1)η

4(1−η)

}
,

bη :=
(3ε+1)η

(1−η)
+

3εa

4
, ε :=

1−
√

1−a

a
, a :=

η

(1+η
)µ.

Remark 8.4.7. ([15], Remark 4.7) It can be seen that (8.4.7) is satisfied if η ≤ 1/3+1/24.

Now, if we take η = 1/3, that is, K0‖x0 − x̂‖µ ≤ 1/16 in Lemma 8.4.6, then it takes the

following form.

Lemma 8.4.8. ([15], Lemma 4.8) Let the assumptions of Lemma 8.4.3 hold with η = 1/3.

Then, for all k ≥ l ≥ 0, we have

‖xl − x̂‖ ≤ c1/3

[
‖xk − x̂‖+

‖αl(A+αlI)
−1(F(xl)−y)‖
αk

]
,

where

c1/3 =
[
1− 8µ+(8µ+1)3ε

16µ

]−1

max
{

µ,1+
3ε+1

8

}
,

ε :=

√
4µ√

4µ+
√

4µ−1
.

8.5. Error Analysis with Noisy Data

The first result in this section gives an error estimate for ‖xδ
k −xk‖ under the Assumption

8.2.5, where k = 0,1,2, · · · ,N.

Lemma 8.5.1. ([15], Lemma 5.1) Let Assumption 8.2.1 hold and let K0‖x0 − x̂‖ ≤ 1/m,

where m > (7+
√

73)/2, and N be the integer satisfying (8.3.2) with

c >
m2 −4m−6

m2 −7m−6
.
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Then, for all k ∈ {0,1, · · · ,N}, we have

‖xδ
k −xk‖ ≤

δ

(1−κ)αk

, (8.5.1)

where

κ :=
1

m

(
4+

3c

c−1
+

6

m

)
.

If we take m = 8 in Lemma 8.5.1, then we get the following corollary as a particular

case of Lemma 8.5.1. We make use of it in the following error analysis.

Corollary 8.5.2. ([15], Corollary 5.2) Let Assumption 8.2.1 hold and let 16K0‖x0− x̂‖ ≤ 1.
Let N be the integer defined by (8.3.2) with c > 13. Then, for all k ∈ {0,1, · · · ,N}, we have

‖xδ
k −xk‖ ≤

δ

(1−κ)αk

,

where

κ :=
31c−19

32(c−1)
.

Lemma 8.5.3. ([15], Lemma 5.3) Let the assumptions of Lemma 8.5.1 hold. Then we have

‖αk(A+αkδ
I)−1(F(xkδ

)−y)‖ ≤ c1δ.

Moreover, if kδ > 0, then, for all 0 ≤ k < kδ, we have

‖αk(A+αkI)−1(F(xk)−y)‖ ≥ c2δ,

where

c1 =
(

1+
2cK0‖x0 − x̂‖

c−1

)(
c0 +

2−κ

1−κ
+

3K0µ‖x0− x̂‖
2(1−κ)2(c−1)

)
,

c2 =
c0 − ((2−κ)(1−κ))− (3K0‖x0− x̂‖/2(1−κ)2(c−1))

1+2(cK0‖x0 − x̂‖/(c−1))

with c0 = 7
3
c+1 and κ as in Lemma 8.5.1.

Theorem 8.5.4. ([15], Theorem 5.4) Let Assumptions 8.2.1 and 8.2.6 hold. If 16kµ‖x0 −
x̂‖ ≤ 1 and the integer kδ is chosen according to stopping rule (8.3.1) with c0 > 94

3
, then

we have

‖xδ
kδ
− x̂‖ ≤ ξ inf

{
‖xk − x̂‖+

δ

αk

: k ≥ 0
}
, (8.5.2)

where ξ = max{2µρ,
c1/3c1+1

1−κ ,c}, ρ := 1+ µ(1+3K0‖x0−x̂‖)
c2(1−κ) with c1/3 and κ as in Lemma 8.4.8

and Corollary 8.5.2, respectively, and c1, c2 as in Lemma 8.5.3.
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8.6. Order Optimal Result with an a Posterior Stopping Rule

In this section, we show the convergence xδ
kδ
→ x̂ as δ → 0 and also give an optimal error

estimate for ‖xδ
kδ
− x̂‖.

Theorem 8.6.1. ([15], Theorem 6.1) Let the assumptions of Theorem 8.5.4 hold and let kδ

be the integer chosen by (8.3.1). If x0 is chosen such that x0 − x̂ ∈ N(F ′(x̂))⊥, then we have

limδ→0 xδ
kδ

= x̂. Moreover, if Assumption 8.2.5 is satisfied, then we have

‖xδ
kδ
− x̂‖ ≤ ξ′µψ−1

(
δ
)
,

where ξ′ := 8µξ/3 with ξ as in Theorem 8.5.4 and ψ : (0,ϕ(a)]→ (0,aϕ(a)] is defined as

ψ(λ) := λϕ−1(λ), λ ∈ (0,ϕ(a)].

Proof. From (8.4.6) and (8.5.2), we get

‖xδ
kδ
− x̂‖ ≤ ξ′′ inf{‖αk(A+αkI)−1(x0 − x̂)‖+

δ

αk

: k = 0,1, · · ·} (8.6.1)

where ξ′′ = 4µ
3

max{2µ
(

1+ µ(1+3k0‖x0−x̂‖)
c2(1−κ)

)
,

c1/3c1+1

1−κ , c}. Now, we choose an integer mδ such

that mδ = max{k : αk ≥
√

δ}. Then, we have

‖xδ
kδ
− x̂‖ ≤ ξ′′ inf{‖αmδ

(A+αmδ
I)−1(x0 − x̂)‖+

δ

αmδ

: k = 0,1, · · ·} (8.6.2)

Note that δ
αmδ

≤
√

δ, so δ
αmδ

→ 0 as δ → 0. Therefore by (8.6.2) to show that xδ
kδ
→ x̂ as

δ → 0, it is enough to prove that ‖αmδ
(A + αmδ

I)−1(x0 − x̂)‖ → 0 as δ → 0. Observe that,

for w ∈ R(F ′(x̂)), i.e., w = F ′(x̂)u for some u ∈ D(F) we have ‖αmδ
(A + αmδ

I)−1w‖ ≤
αmδ

‖u‖ → 0 as δ → 0. Now since R(F ′(x̂)) is a dense subset of N(F ′(x̂))⊥ it follows that

‖αmδ
(A+αmδ

I)−1(x0 − x̂)‖→ 0 as δ → 0. Using Assumption 8.2.5, we get that

‖αk(A+αkI)−1(x0 − x̂)‖ ≤ ϕ(αk). (8.6.3)

So by (8.6.2) and (8.6.3) we obtain that

‖xδ
kδ
− x̂‖ ≤ ξ′′ inf{ϕ(αk)+

δ

αk

: k = 0,1, · · ·}. (8.6.4)

Choose k̂δ such that

ϕ(αk̂δ
)αk̂δ

≤ δ < ϕ(αk)αk for k = 0,1, · · ·kδ −1. (8.6.5)

This also implies that

ψ(ϕ(αk̂δ
)) ≤ δ < ψ(ϕ(αk)) for k = 0,1, · · ·kδ −1. (8.6.6)

From (8.6.4), ‖xδ
kδ
− x̂‖ ≤ ξ′′{ϕ(αk̂δ

)+ δ
αk̂δ

}. Now using (8.6.5) and (8.6.6) we get ‖xδ
kδ
−

x̂‖ ≤ 2ξ′′ δ
αk̂δ

≤ 2ξ′′µ δ
αk̂δ−1

≤ 2ξ′′µψ−1(δ). This completes the proof.
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8.7. Numerical Examples

We provide two numerical examples, where K0 < K.

Example 8.7.1. Let X = R, D(F) = U(0,1), x̂ = 0 and define a function F on D(F) by

F(x) = ex −1. (8.7.1)

Then, using (8.7.1) and Assumptions 8.2.1 (2) and 8.2.2, we get

K0 = e−1 < K = e.

Example 8.7.2. Let X = C([0,1]) (: the space of continuous functions defined on [0,1]

equipped with the max norm) and D(F) = U(0,1). Define an operator F on D(F) by

F(h)(x) = h(x)−5

Z 1

0
xθh(θ)3dθ. (8.7.2)

Then the Fréchet-derivative is given by

F ′(h[u])(x) = u(x)−15

Z 1

0
xθh(θ)2u(θ)dθ (8.7.3)

for all u ∈ D(F). Using (8.7.2), (8.7.3), Assumptions 8.2.1 (2), 8.2.2 for x̂ = 0, we get

K0 = 7.5 < K = 15.

Next, we provide an example where K
K0

can be arbitrarily large.

Example 8.7.3. Let X = D(F) = R, x̂ = 0 and define a function F on D(F) by

F(x) = d0x−d1 sin1+d1 sined2x, (8.7.4)

where d0, d1 and d2 are the given parameters. Note that F(x̂) = F(0) = 0. Then it can easily

be seen that, for d2 sufficiently large and d1 sufficiently small, K
K0

can be arbitrarily large.

We now present two examples where Assumption 8.2.2 is not satisfied, but Assumption

8.2.1 (2) is satisfied.

Example 8.7.4. Let X = D(F) = R, x̂ = 0 and define a function F on D by

F(x) =
x1+ 1

i

1+ 1
i

+c1x−c1 −
i

i+1
, (8.7.5)

where c1 is a real parameter and i > 2 is an integer. Then F ′(x) = x1/i +c1 is not Lipschitz

on D. Hence Assumption 8.2.2 is not satisfied. However, the central Lipschitz condition in

Assumption 8.2.2 (2) holds for K0 = 1. We also have that F(x̂) = 0. Indeed, we have

‖F ′(x)−F ′(x̂)‖ = |x1/i − x̂1/i|

=
|x− x̂|

x̂
i−1

i + · · ·+x
i−1

i

and so

‖F ′(x)−F ′(x̂)‖ ≤ K0|x− x̂|.
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Example 8.7.5. We consider the integral equation

u(s) = f (s)+λ

Z b

a
G(s, t)u(t)1+1/ndt (8.7.6)

for all n ∈ N, where f is a given continuous function satisfying f (s) > 0 for all s ∈ [a,b], λ

is a real number and the kernel G is continuous and positive in [a,b]× [a,b].
For example, when G(s, t) is the Green kernel, the corresponding integral equation is

equivalent to the boundary value problem

u′′ = λu1+1/n,

u(a) = f (a), u(b) = f (b).

These type of the problems have been considered in [1]–[5]. The equation of the form

(8.7.6) generalize the equation of the form

u(s) =

Z b

a
G(s, t)u(t)ndt, (8.7.7)

which was studied in [1]-[5]. Instead of (8.7.6), we can try to solve the equation F(u) = 0,

where

F : Ω ⊆C[a,b]→C[a,b], Ω = {u ∈ C[a,b] : u(s)≥ 0, s ∈ [a,b]}
and

F(u)(s) = u(s)− f (s)−λ

Z b

a
G(s, t)u(t)1+1/ndt.

The norm we consider is the max-norm. The derivative F ′ is given by

F ′(u)v(s) = v(s)−λ(1+
1

n
)

Z b

a
G(s, t)u(t)1/nv(t)dt

for all v ∈ Ω. First of all, we notice that F ′ does not satisfy the Lipschitz-type condition

in Ω. Let us consider, for instance, [a,b] = [0,1], G(s, t) = 1 and y(t) = 0. Then we have

F ′(y)v(s) = v(s) and

‖F ′(x)−F ′(y)‖= |λ|(1+
1

n
)

Z b

a
x(t)1/ndt.

If F ′ were the Lipschitz function, then we have

‖F ′(x)−F ′(y)‖ ≤ L1‖x−y‖

or, equivalently, the inequality

Z 1

0
x(t)1/ndt ≤ L2 max

x∈[0,1]
x(s) (8.7.8)

would hold for all x ∈ Ω and for a constant L2. But this is not true. Consider, for example,

the function

x j(t) =
t

j
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for all j ≥ 1 and t ∈ [0,1]. If these are substituted into (8.7.7), then we have

1

j1/n(1+1/n)
≤ L2

j
⇐⇒ j1−1/n ≤ L2(1+1/n)

for all j ≥ 1. This inequality is not true when j → ∞. Therefore, Assumption 8.2.2 is not

satisfied in this case. However, Assumption 8.2.1 (2) holds. To show this, suppose that

x̂(t) = f (t) and γ = mins∈[a,b] f (s). Then, for all v ∈ Ω, we have

‖[F ′(x)−F ′(x̂)]v‖ = |λ|
(

1+
1

n

)
max

s∈[a,b]

∣∣∣
Z b

a
G(s, t)(x(t)1/n− f (t)1/n)v(t)dt

∣∣∣

≤ |λ|
(

1+
1

n

)
max

s∈[a,b]
Gn(s, t),

where Gn(s, t) = G(s,t)|x(t)− f (t)|
x(t)(n−1)/n+x(t)(n−2)/n f (t)1/n+···+ f (t)(n−1)/n ‖v‖. Hence it follows that

‖[F ′(x)−F ′(x̂)]v‖ =
|λ|(1+1/n)

γ(n−1)/n
max

s∈[a,b]

Z b

a
G(s, t)dt‖x− x̂‖

≤ K0‖x− x̂‖,

where K0 =
|λ|(1+1/n)

γ(n−1)/n N and N = maxs∈[a,b]

R b
a G(s, t)dt. Then Assumption 8.2.1 (2) holds

for sufficiently small λ.

In the next remarks, we compare our results with the corresponding ones in [15].

Remark 8.7.6. Note that the results in [15] were shown using Assumption 8.2.2 whereas

we used weaker Assumption 8.2.1 (2) in this chapter. Next, our result, Proposition 8.2.3,

was shown with 3K0 replacing K. Therefore, if 3K0 < K (see Example 8.7.3), then our result

is tighter. Proposition 8.2.4 was shown with K0 replacing K. Then, if K0 < K, then our result

is tighter. Theorem 8.3.2 was shown with 6K0 replacing 2K. Hence, if 3K0 < K, our result

is tighter. Similar favorable to us observations are made for Lemma 8.4.1, Theorem 8.4.2

and the rest of the results in [15].

Remark 8.7.7. The results obtained here can also be realized for the operators F satisfying

an autonomous differential equation of the form

F ′(x) = P(F(x)),

where P : X → X is a known continuous operator. Since F ′(x̂) = P(F(x̂)) = P(0), we

can compute K0 in Assumption 8.2.1 (2) without actually knowing x̂. Returning back to

Example 8.7.1, we see that we can set P(x) = x+1.
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Chapter 9

A Semilocal Convergence for a

Uniparametric Family of Efficient

Secant-Like Methods

9.1. Introduction

Let U(x, r) and U(x, r) stand, respectively, for the open and closed ball in X with center

x ∈ X and radius r > 0. Denote by L(X ,Y ) the space of bounded linear operators from X
into Y .

In this chapter we are concerned with the problem of approximating a locally unique

solution x∗ of nonlinear equation

F(x) = 0, (9.1.1)

where F is a Fráchet-differentiable operator defined on a non-empty convex subset D of a

Banach space X with values in a Banach space Y .

Many problems from computational sciences, physics and other disciplines can be taken

in the form of equation (9.1.1) using Mathematical Modelling [5, 6, 8, 9, 12, 22, 25]. The

solution of these equations can rarely be found in closed form. That is why the solution

methods for these equations are iterative. In particular, the practice of numerical analysis

for finding such solutions is essentially connected to variants of Newton’s method [5, 6, 9,

12, 19, 21, 22, 24, 25]. The study about the convergence of iterative procedures is usually fo-

cussed on two types: semilocal and local convergence analysis. The semilocal convergence

is, based on the information around an initial point, to give criteria ensuring the convergence

of iterative procedure; while the local one is, based on the information around a solution,

to find estimates of the radii of convergence balls. There are a lot of studies on the weak-

ness and/or extension of the hypothesis made on the underlying operators; see for example

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 17, 15, 16, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27]

and the references therein.

Ezquerro and Rubio used in [17] the uniparametric family of secant-like methods de-
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fined by





x−1,x0 given in D,

yn = µxn +(1−µ)xn−1, µ ∈ [0,1],
xn+1 = xn −B−1

n F(xn), Bn = [yn,xn;F], for each n = 0,1, . . .
(9.1.2)

and the method of recurrent relations to generate a sequence {xn} approximating x∗. Here,

[z,w;F] for each z,w ∈ D is a divided difference of order one, which is a bounded linear

operator such that [4, 5, 7, 9, 19, 22, 25]

[z,w;F] : D → Y and [z,w;F](z−w) = F(z)−F(w). (9.1.3)

Secant-like method (9.1.2) can be considered as a combination of the secant and New-

ton’s method. Indeed, if µ = 0 we obtain the secant method and if µ = 1 we get New-

ton’s method provided that F ′ is Frchet-differentiable on D, since, then xn = yn and

[yn,xn;F] = F ′(xn).

It was shown in [15, 16] that the R-order of convergence is at least
1+

√
5

2
for λ ∈ [0,1),

the same as that of the secant method. Later in [12] another uniparametric family of secant-

like methods defined by





x−1,x0 given in D,

yn = λxn +(1−λ)xn−1, λ ≥ 1,
xn+1 = xn −A−1

n F(xn), An = [yn,xn−1;F] for each n = 0,1, . . .
(9.1.4)

was studied. It was shown that there exists λ0 ≥ 2 that the R-order of convergence is at

least
1+

√
5

2
if λ ∈ [1,λ0] and λ 6= 2 and if λ = 2 the R-order of convergence is quadratic.

Note that if λ = 1 we obtain the secant method, whereas if λ = 2 we obtain the Kurchatov

method [9, 12, 19, 25].

We present a semilocal convergence analysis for secant like method (9.1.2) using our

idea of recurrent functions instead of recurrent relations and tighter majorizing sequences.

This way our analysis provided the following advantages (A) over the work in [12] under

the same computational cost:

(A1) Weaker sufficient convergence conditions,

(A2) Tighter estimates on the distances ‖xn+1 −xn‖ and ‖xn −x∗‖ for each n = 0,1, . . .,

(A3) At least as precise information on the location of the solution and

(A4) The results are presented in affine invariant form, whereas the ones in [12] are given

in a non-affine invariant forms. The advantages of affine versus non-affine results

have been explained in [4, 5, 7, 9, 19, 22, 25]

Our hypotheses for the semilocal convergence of secant-like method (9.1.4) are:

(C1) There exists a divided difference of order one [z,w;F] ∈ L(X ,Y ) satisfying (9.1.3),
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(C2) There exist x0 ∈ D, η ≥ 0 such that A−1
0 ∈ L(Y ,X ) and ‖A−1

0 F(x0)‖ ≤ η,

(C3) There exist x−1,x0 ∈ D and c ≥ 0 such that

‖x0 −x−1‖ ≤ c,

(C4) There exists K > 0 such that

‖A−1
0 ([x,y;F]− [v,w;F])‖ ≤ K(‖x−v‖+‖y−w‖) for each x,y,v,w ∈ D.

We shall denote by (C) conditions (C1)–(C4). In view of (C4) there exist H0,H1,H > 0

such that

(C5) ‖A−1
0 ([x1,x0;F]−A0)‖ ≤ H0(‖x1−y0‖+‖x0 −x−1‖),

(C6) ‖A−1
0 (A1−A0)‖ ≤ H1(‖y1 −y0‖+‖x0 −x−1‖) and

(C7) ‖A−1
0 ([x,y;F]−A0)‖ ≤ H(‖x−y0‖+‖y−x−1‖) for each x,y ∈ D.

Clearly

H0 ≤ H1 ≤ H ≤ K (9.1.5)

hold in general and
K

H
,

H

H1

can be arbitrarily large [5, 6, 9]. Note that (C5), (C6), (C7) are

not additional to (C4) hypotheses. In practise the computation of K requires the computation

of H0, H1 and H. It also follows from (C4) that F is differentiable [5, 6, 19, 21].

The chapter is organized as follows. In Section 9.2. we show that under the same hy-

potheses as in [18] and using recurrent relations, we obtain an at least as precise information

on the location of the solution. Section 9.3. contains the semilocal convergence analysis us-

ing weaker hypotheses and recurrent functions. We also show the advantages (A). The

results are also extended to cover the case of equations with nondifferentiable operators.

Numerical examples are presented in the concluding Section 9.4..

9.2. Semilocal Convergence Using Recurrent Relations

As in [12] let us define sequences {an} and {bn} for each n = 0,1, . . . by

a−1 =
η

c+η
, b−1 =

Kc2

c+η
,

an = f (an−1)g(an−1)bn−1, bn = f (an−1)
2an−1bn−1

and functions f , g on [0,1) by

f (t) =
1

1− t
and g(t) = (2−λ)+λ f (t)t.

Next, we present the main result in this section in affine invariant form.
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Theorem 9.2.1. Under the (C) hypotheses further suppose that

U(x0,R)⊆ D

and for λ ∈ [1,λ0]

a−1 <
3−

√
5

2
, b−1 <

a−1(1−a−1)
2

2(1−a−1)−λ(1−2a−1)

where

R =
1−a0

1−2a0

λη

and

λ0 ∈
[

2,
2c

c−η

)
.

Then, sequence {xn} generated by secant-like method (9.1.4) is well defined, remains in

U(x0,R) for each n = 0,1,2, . . . and converges to a solution x∗ ∈ U(x0,R) of equation

F(x) = 0. Moreover, the following estimates hold

‖xn+1 −xn‖ ≤ f (an−1)an−1‖xn −xn−1‖

and

‖xn −x∗‖ ≤ ( f (a0)a0)
n

1− f (a0)a0

‖x1 −x0‖.

Furthermore, the solution x∗ is unique in D0 = U(x0,σ0)∩D, where σ0 =
1

H
− λc− R,

provided that

R <
1

2

(
1

H
−λc

)
= R0.

Proof. The proof with the exception of the uniqueness part is given in Theorem 3 [12] if

we use A−1
0 F instead of F and set b = 1, where ‖A−1

0 ‖ ≤ b.

To prove the uniqueness of the solution, let us assume y∗ ∈ D0 is a solution of F(x) = 0.

Let L = [y∗,x∗;F]. Then, using (C7) and the definition of σ0 we get in turn that

‖A−1
0 (L−A0)‖ ≤ H(‖y∗−y0‖+‖x∗−x−1‖) < H(σ0 +λc+R) = 1. (9.2.1)

It follows from (9.2.1) and the Banach lemma on invertible operators [4, 5, 6, 9, 19, 22, 25]

that L−1 ∈ L(Y ,X ). Using the identity 0 = F(y∗)−F(x∗) = L(y∗ − x∗) we deduce that

x∗ = y∗. That completes the proof of the Theorem. �

Remark 9.2.2. If K = H, Theorem 9.2.1 reduces to Theorem 3 in [12]. Otherwise, i. e. if

H < K, then our Theorem 9.2.1 constitutes an improvement over Theorem 3, since

σ < σ0 (9.2.2)

and

R0 < R1, (9.2.3)
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where

σ =
1

K
−λc−R

and

R0 =
1

2

(
1

K
−λc

)

where given in [12] (for b = 1). Hence, (9.2.2) and (9.2.3) justify our claim for this section

made in the Introduction of this chapter.

9.3. Semilocal Convergence Using Recurrent Functions

We present the semilocal convergence of secant-like methods. First, we need some auxiliary

results on majorizing sequences for secant-like method.

Lemma 9.3.1. Let c ≥ 0, η > 0, H > 0, K > 0 and λ ≥ 1. Set t−1 = 0, t0 = c and t1 = c+η.

Define scalar sequences {qn}, {tn}, {αn} for each n = 0,1, . . . by

qn = Hλ(tn+1 + tn −c), (9.3.1)

tn+2 = tn+1 +
K(tn+1− tn +λ(tn− tn−1))

1−qn

(tn+1− tn),

αn =
K(tn+1− tn +λ(tn− tn−1))

1−qn

, (9.3.2)

functions fn on [0,1) for each n = 1,2, . . . by

fn(t) = K(tn +λtn−1)η+Hλ((1+ t + · · ·+ tn+1)η+(1+ t + · · ·+ tn)η+c)−1 (9.3.3)

and polynomial p on [0,1) by

p(t) = Hλt3 +(Hλ+K)t2 +K(λ−1)t −λK. (9.3.4)

Denote by α the only root of polynomial p in (0,1). Suppose that

0 ≤ α0 ≤ α ≤ 1−Hλ(c+2η)

1−Hλc
· (9.3.5)

Then, sequence {tn} is non-decreasing, bounded from above by t∗∗ defined by

t∗∗ =
η

1−α
+c (9.3.6)

and converges to its unique least upper bound t∗ which satisfies

c+η ≤ t∗ ≤ t∗∗. (9.3.7)

Moreover, the following estimates are satisfied for each n = 0,1,2, . . .

0 ≤ tn+1− tn ≤ αnη (9.3.8)

and

t∗− tn ≤
αnη

1−α
· (9.3.9)



172 Ioannis K. Argyros and Á. Alberto Magreñán

Proof. We shall first show that polynomial p has roots in (0,1). Indeed, we have p(0) =

−λK < 0 and p(1) = 2Hλ > 0. Using the intermediate value theorem we deduce that there

exists at least one root of p in (0,1). Moreover p′(t) > 0. Hence p crosses the positive axis

only once. Denote by α the only root of p in (0,1). It follows from (9.3.1) and (9.3.2) that

estimate (9.3.8) is certainly satisfied if

0 ≤ αn ≤ α. (9.3.10)

Estimate (9.3.10) is true by (9.3.5) for n = 0. Then, we have by (9.3.1) that

t2 − t1 ≤ α(t1− t0) ⇒ t2 ≤ t1 +α(t1− t0) ⇒ t2 ≤ η+ t0 +αη

= c+(1+α)η = c+
1−α2

1−α
η < t∗∗.

Suppose that

tk+1− tk ≤ αkη and tk+1 ≤ c+
1−αk+1

1−α
η for each k ≤ n. (9.3.11)

Estimate (9.3.10) shall be true for k +1 replacing n if

0 ≤ αk+1 ≤ α (9.3.12)

or

fk(α) ≤ 0, (9.3.13)

where fk is defined by (9.3.3). We need a relationship between two consecutive recurrent

functions fk for each k = 1,2 . . . Using (9.3.3) and (9.3.4) we deduce that

fk+1(α) = fk(α)+ p(α)αk−1η = fk(α), (9.3.14)

since p(α) = 0. Define function f∞ on (0,1) by

f∞(t) = lim
k→+∞

fk(t). (9.3.15)

Then, we get from (9.3.3) and (9.3.15) that

f∞(α) = Hλ

(
2η

1−α
+c

)
−1. (9.3.16)

Hence, by (9.3.14)–(9.3.16), (9.3.13) is satisfied if

f∞(α) ≤ 0 (9.3.17)

which is true by (9.3.5). The induction for (9.3.8) is complete. That is sequence {tn} is non-

decreasing, bounded from above by t∗∗ given by (9.3.6) and as such it converges to some t∗

which satisfies (9.3.7). Estimate (9.3.9) follows from (9.3.8) by using standard majorization

techniques [4, 5, 6, 9, 19, 22, 25]. The proof of Lemma 9.3.1 is complete. �
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Lemma 9.3.2. Let c ≥ 0, η > 0, H0 > 0, H1 > 0, H > 0, K > 0 and λ ≥ 1. Set s−1 = 0,

s0 = c, s1 = c+η. Define scalar sequences {sn}, {bn} for each n = 1,2, . . . by





s2 = s1 +
H0(s1 − s0 +λ(s0− s−1))

1−H1λ(s1 + s0 −c)
(s1− s0),

sn+2 = sn+1 +
K(sn+1− sn +λ(sn− sn−1))

1−Hλ(sn+1 + sn −c)
(sn+1− sn),

(9.3.18)





b1 =
H0(s1− s0 +λ(s0− s−1))

1−H1λ(s1 + s0 −c)
,

bn =
K(sn+1− sn +λ(sn− sn−1))

1−Hλ(sn+1 + sn −c)
,

(9.3.19)

and functions gn on [0,1) by

gn(t) = K(t +λ)tn−1(s2− s1)+Hλt

(
2s1 +

1− tn+1

1− t
(s2− s1)+

1− tn

1− t
(s2− s1)

)

−(1+Hλc)t. (9.3.20)

Suppose that

0 ≤ b1 ≤ α ≤ 1−Hλ(2s2−c)

1−Hλ(2s1−c)
, (9.3.21)

where α is defined in Lemma 9.3.1. Then, sequence {sn} is non-decreasing, bounded from

above by s∗∗ defined by

s∗∗ = c+η +
s2− s1

1−α
(9.3.22)

and converges to its unique least upper bound s∗ which satisfies

c+η ≤ s∗ ≤ s∗∗. (9.3.23)

Moreover, the following estimates are satisfied for each n = 1,2, . . .

0 ≤ sn+2− sn+1 ≤ αn(s2− s1). (9.3.24)

Proof. We shall show using induction that

0 ≤ bn ≤ α. (9.3.25)

Estimate (9.3.25) is true for n = 0 by (9.3.21). Then, we have by (9.3.18) that

0 ≤ s3 − s2 ≤ α(s2− s1) ⇒ s3 ≤ s2 +α(s2 − s1) ⇒
⇒ s3 ≤ s2 +(1+α)(s2− s1)− (s2 − s1) ⇒ (9.3.26)

⇒ s3 ≤ s1 +
1−α2

1−α
(s2 − s1)≤ s∗∗.
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Suppose (9.3.25) holds for each n ≤ k. Then using (9.3.18) we get that

0 ≤ sk+2− sk+1 ≤ αk(s2 − s1) (9.3.27)

and

sk+2 ≤ s1 +
1+αk+1

1−α
(s2− s1). (9.3.28)

Estimate (9.3.25) shall be satisfied if

gk(α) ≤ 0. (9.3.29)

Using (9.3.20) we get the following relationship between two consecutive recurrent func-

tions gk:

gk+1(α) = gk(α)+ p(α)αk−1(s2 − s1) = gk(α). (9.3.30)

Define function g∞ on [0,1) by

g∞(t) = lim
k→+∞

gk(t). (9.3.31)

Then, we get from (9.3.20) that

g∞(α) = 2αHλ

[
s1 +

s2 − s1

1−α

]
−α(1+Hλc). (9.3.32)

Then, (9.3.29) is satisfied if

g∞(α) ≤ 0, (9.3.33)

which is true by the choice of α and the right hand side inequality in hypothesis (9.3.21).

The induction for (9.3.25) (i. e. (9.3.24)) is complete. The rest of the proof as identical to

Lemma 9.3.1 is omitted. The proof is complete. �

Remark 9.3.3. (a) Let us consider an interesting choice for λ. Let λ = 1 (secant

method). Then, using (9.3.4) and (9.3.5) we have that

α =
2K

K +
√

K2 +4HK
(9.3.34)

and
K(c+η)

1−H(c+η)
≤ α ≤ 1−H(c+2η)

1−Hc
· (9.3.35)

The corresponding condition for the secant method is given by [6, 9, 18, 21]:

Kc+2
√

Kη ≤ 1. (9.3.36)

Condition (9.3.35) can be weaker than (9.3.36) (see also the numerical examples

at the end of the chapter). Moreover, the majorizing sequence {un} for the secant

method related to (9.3.36) is given by




u−1 = 0, u0 = c, u1 = c+η,

un+2 = un+1 +
K(un+1−un−1)

1−K(un+1 +un −c)
(un+1−un).

(9.3.37)
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A simple inductive argument shows that if H < K, then for each n = 2,3, . . .

tn < un, tn+1− tn < un+1−un and t∗ ≤ u∗ = lim
n→+∞

un. (9.3.38)

(b) The majorizing sequence {vn} used in [12] is essentially given by





v−1 = 0, v0 = c, v1 = c+η,

vn+2 = vn+1 +
K(vn+1−vn +λ(vn−vn−1))

1−Kλ(vn+1 +vn −c)
(vn+1−vn).

(9.3.39)

Then, again we have

tn < vn, tn+1− tn < vn+1−vn and t∗ ≤ v∗ = lim
n→+∞

vn. (9.3.40)

Moreover, our sufficient convergence conditions can be weaker than [12].

(c) Clearly, iteration {sn} is tighter than {tn} and we have as in (9.3.40) than for H0 < K

or H1 < H

sn < tn, sn+1− sn < tn+1− tn and s∗ = lim
n→+∞

sn < t∗. (9.3.41)

Next, we present obvious and useful extensions of Lemma 9.3.1 and Lemma 9.3.2,

respectively.

Lemma 9.3.4. Let N = 0,1,2, . . . be fixed. Suppose that

t1 ≤ t2 ≤ ·· · ≤ tN ≤ tN+1, (9.3.42)

1

Hλ
> tN+1 − tN +λ(tN − tN−1) (9.3.43)

and

0 ≤ αN ≤ α ≤ 1−Hλ(tN − tN−1 +2(tN+1− tN))

1−Hλ(tN − tN−1)
(9.3.44)

Then, sequence {tn} generated by (9.3.2) is nondecreasing, bounded from above by t∗∗ and

converges to t∗ which satisfies t∗ ∈ [tN+1, t
∗]. Moreover, the following estimates are satisfied

for each n = 0,1, . . .
0 ≤ tN+n+1− tN+n ≤ αn(tN+1− tN) (9.3.45)

and

t∗− tN+n ≤
αn

1−α
(tN+1− tN). (9.3.46)

Lemma 9.3.5. Let N = 1,2, . . . be fixed. Suppose that

s1 ≤ s2 ≤ ·· · ≤ sN ≤ sN+1, (9.3.47)

1

Hλ
> sN+1 − sN +λ(sN − sN−1) (9.3.48)
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and

0 ≤ bN ≤ α ≤ 1−Hλ(2sN+1− sN−1)

1−Hλ(2sN − sN−1)
· (9.3.49)

Then, sequence {sn} generated by (9.3.18) is nondecreasing, bounded from above by s∗∗

and converges to s∗ which satisfies s∗ ∈ [sN+1, s∗]. Moreover, the following estimates are

satisfied for each n = 0,1, . . .

0 ≤ sN+n+1 − sN+n ≤ αn(sN+1 − sN) (9.3.50)

and

s∗− sN+n ≤
αn

1−α
(sN+1− sN). (9.3.51)

Next, we present the following semilocal convergence result for secant-like method

under the (C) conditions.

Theorem 9.3.6. Suppose that the (C), Lemma 9.3.1 (or Lemma 9.3.4) conditions and

U = U(x0, (2λ−1)t∗) ⊆ D (9.3.52)

hold. Then, sequence {xn} generated by secant-like method is well defined, remains in U for

each n = −1,0,1,2, . . . and converges to a solution x∗ ∈U(x0, t
∗−c) of equation F(x) = 0.

Moreover, the following estimates are satisfied for each n = 0,1, . . .

‖xn+1−xn‖ ≤ tn+1− tn (9.3.53)

and

‖xn −x∗‖ ≤ t∗− tn. (9.3.54)

Furthermore, if there exists T ≥ t∗−c such that

U(x0, r)⊆ D (9.3.55)

and

H(T + t∗ +(λ−1)c) < 1, (9.3.56)

then, the solution x∗ is unique in U(x0,T ).

Proof. We use mathematical induction to prove that

‖xk+1−xk‖ ≤ tk+1− tk (9.3.57)

and

U(xk+1, t
∗− tk+1) ⊆U(xk, t

∗− tk) (9.3.58)

for each k = −1,0,1, . . .. Let z ∈U(x0, t
∗− t0). Then we obtain that

‖z−x−1‖ ≤ ‖z−x0‖+‖x0 −x−1‖ ≤ t∗− t0 +c = t∗

= t∗− t−1,
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which implies z ∈ U(x−1, t
∗− t−1). Let also w ∈U(x0, t

∗− t1). We get that

‖w−x0‖ ≤ ‖w−x1‖+‖x1 −x0‖ ≤ t∗− t1 + t1 − t0

= t∗− t0,

hence, w ∈U(x0, t
∗, t0). Note that ‖x−1−x0‖ ≤ c = t0−t−1 and ‖x1−x0‖= ‖A−1

0 F(x0)‖ ≤
η = t1− t0 < t∗. That is x1 ∈U(x0, t

∗)⊆ D. Hence, estimates (9.3.57) and (9.3.58) hold for

k = −1 and k = 0. Suppose that (9.3.57) and (9.3.58) hold for all n ≤ k. Then, we obtain

that

‖xk+1−x0‖ ≤
k+1

∑
i=1

‖xi −xi−1‖ ≤
k+1

∑
i=1

(ti − ti−1)

= tk+1− t0 = t∗−c ≤ t∗

and

‖yk −x0‖ = ‖λxk +(1−λ)xk−1−x0‖ = ‖λ(xk −x0)+(1−λ)(xk−1−x0)‖
≤ λ‖xk −x0‖+(λ−1)‖xk−1−x0‖
≤ λt∗ +(λ−1)t∗ = (2λ−1)t∗.

Hence, xk+1, yk ∈ U(x0, t
∗).

Using (C7), Lemma 9.3.1 and the introduction hypotheses, we get that

‖A−1
0 (Ak+1−A0)‖ ≤ H(‖yk+1−y0‖+‖xk −x−1‖)

≤ H(λ‖xk+1−x0‖+ |1−λ|‖xk −x−1‖+‖xk −x−1‖)
≤ Hλ(‖xk+1−x0‖+‖xk −x0‖+‖x0 −x−1‖) (9.3.59)

≤ Hλ(tk+1− t0 + tk − t0 +c)

= Hλ(tk+1 + tk −c) < 1.

It follows from (9.3.59) and the Banach lemma on invertible operators [4, 5, 6, 9, 19, 22, 25]

that A−1
k+1 exists and

‖A−1
k+1A0‖ ≤ (1−Hλ(tk+1 + tk −c))−1. (9.3.60)

In view of (9.1.4), we obtain the identity

F(xk+1) = F(xk+1)−F(xk)− [yk,xk−1;F](xk+1−xk)

= ([xk+1,xk;F]− [yk,xk−1;F])(xk+1−xk). (9.3.61)

Using (9.1.4), (9.3.16) and the induction hypotheses we get in turn that

‖A−1
0 F(xk+1)‖ ≤ K(‖xk+1−yk‖+‖xk −xk−1‖)‖xk+1−xk‖

≤ K(‖xk+1−xk‖+λ‖xk −xk−1‖)‖xk+1−xk‖ (9.3.62)

≤ K(tk+1− tk +λ(tk − tk+1))(tk+1− tk).
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It now follows from (9.1.4), (9.3.1), (9.3.61) and (9.3.62) that

‖xk+2−xk+1‖ ≤ ‖A−1
k+1A0‖‖A−1

0 F(xk+1)‖

≤ K(tk+1− tk +λ(tk − tk−1))(tk+1− tk)

1−Hλ(tk+1 + tk −c)
(9.3.63)

= tk+2− tk+1,

which completes the induction for (9.3.57). Moreover, let v ∈ U(xk+2, t
∗− tk+2). Then, we

get that

‖v−xk+1‖ ≤ ‖v−xk+2‖+‖xk+2 −xk+1‖
≤ t∗− tk+2 + tk+2− tk+1 = t∗− tk+1,

which implies v ∈U(xk+1, t
∗− tk+1). The induction for (9.3.58) is complete.

Lemma 9.3.1 implies that {tk} is a complete sequence. It follows from (9.3.57) and

(9.3.58) that {xk} is a complete sequence in a Banach space X and as such it converges to

some x∗ ∈U(x0, t
∗−c) (since U(x0, t

∗−c) is a closed set). By letting k→+∞ in (9.3.62) we

obtain F(x∗) = 0. Furthermore, estimate (9.3.54) follows from (9.3.53) by using standard

majorization techniques [5, 6, 8, 9, 19, 22, 25]. To show the uniqueness part, let y∗ ∈
U(x0,T ) be such that F(y∗) = 0. We have that

‖A−1
0 ([y∗,x∗;F]−A0)‖ ≤ H(‖y∗−y0‖+‖x∗−x−1‖)

≤ H(‖y∗−x0‖+(λ−1)‖x0 −x−1‖ (9.3.64)

+‖x∗−x0‖+‖x0 −x−1‖)
≤ (R0 + t∗ +(λ−1)c) < 1.

It follows from (9.3.64) and the Banach lemma on invertible operators that [y∗,x∗;F]−1

exists. Then, using the identity 0 = F(y∗)−F(x∗) = [y∗,x∗;F](y∗− x∗), we deduce that

x∗ = y∗. The proof of Theorem 9.3.6 is complete. �

Remark 9.3.7. (a) The limit point t∗ can be replaced in Theorem 9.3.6 by t∗∗ given in

closed form by (9.3.6).

(b) It follows from the proof of Theorem 9.3.6 that {sn} is also a majorizing sequence for

{xn}. Hence, Lemma 9.3.2 (or Lemma 9.3.5), {sn}, s∗ can replace Lemma 9.3.1 (or

Lemma 9.3.4) {tn}, t∗ in Theorem 9.3.6.

Hence we arrive at:

Theorem 9.3.8. Suppose that the (C) conditions, Lemma 9.3.2 (or Lemma 9.3.5) and

U = U(x0, (2λ−1)s∗) ⊆ D

hold. Then sequence {xn} generated by secant-like method is well defined, remains in U for

each n =−1,0,1,2, . . . and converges to a solution x∗ ∈U(x0, s∗−c) of equation F(x) = 0.

Moreover, the following estimates are satisfied for each n = 0,1, . . .

‖xn+1−xn‖ ≤ sn+1− sn
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and

‖xn −x∗‖ ≤ s∗− sn.

Furthermore, if there exists T ≥ s∗−c such that

U(x0, r)⊆ D

and

H(T + s∗ +(λ−1)c) < 1,

then, the solution x∗ is unique in U(x0,T ).

Let us consider the equation

F(x)+G(x) = 0, (9.3.65)

where F is a before and G : D → Y is continuous. The corresponding secant-like method

is given by

xn+1 = xn −A−1
n (F(xn)+G(xn)) for each n = 0,1,2 . . ., (9.3.66)

where x0 is an initial guess.

Suppose that

(C8)
‖A−1

0 (G(x)−G(y))‖ ≤ M‖x−y‖ for each x,y ∈ D, (9.3.67)

and

(C9)
‖A−1

0 (G(x1)−G(x0))‖ ≤ M0‖x1 −x0‖. (9.3.68)

Clearly,

M0 ≤ M (9.3.69)

holds and
M

M0

can be arbitrarily large [4, 5, 6, 8, 9].

We shall denote by (C∗) the conditions (C) and (C8), (C9). Then, we can present the

corresponding result along the same lines as in Lemma 9.3.1, Lemma 9.3.2, Lemma 9.3.4,

Lemma 9.3.5, Theorem 9.3.6 and Theorem 9.3.8. However, we shall only present the results

corresponding to Lemma 9.3.2 and Theorem 9.3.8, respectively. The rest combination of

results can be given in an analogous way.

Lemma 9.3.9. Let c ≥ 0, η > 0, H0 > 0, H1 > 0, H > 0, M0 > 0, M > 0, K > 0 and λ ≥ 1.

Set γ−1 = 0, γ0 = c, γ1 = c+η. Define scalar sequences {γn}, {δn} by





γ2 = γ1 +
H0(γ1 − γ0 +λ(γ0 − γ−1))+M0

1−H1λ(γ1 + γ0 −c)
(γ1 − γ0),

γn+2 = γn+1 +
K(γn+1− γn +λ(γn − γn−1))+M

1−Hλ(γn+1 + γn −c)
(γn+1− γn),
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δ1 =
H0(γ1 − γ0 +λ(γ0 − γ−1))+M0

1−H1λ(γ1 + γ0 −c)
,

δn =
K(γn+1− γn +λ(γn − γn−1))+M

1−Hλ(γn+1 + γn −c)
,

and functions hn on [0,1) by

hn(t) = K(t +λ)tn−1(γ2 − γ1)+M

+Hλt

[
2γ1 +

1− tn+1

1− t
(γ2 − γ1)+

1− tn

1− t
(γ2 − γ1)

]

−(1+Hλc)t.

Suppose that function ϕ given by

ϕ(t) = 2Hλ

(
γ1 +

γ2 − γ1

1− t

)
t − (1+Hλc)t +M

has a minimal zero a in [0,1) and

0 ≤ δ1 ≤ α ≤ a,

where α was defined in Lemma 9.3.1. Then, sequence {γn} is non-decreasing, bounded

from above by γ∗∗ defined by

γ∗∗ = c+η +
γ2 − γ1

1−α

and converges to its unique least upper bound γ∗ which satisfies

c+η ≤ γ∗ ≤ γ∗∗.

Moreover, the following estimates are satisfied for each n = 1,2, . . .

0 ≤ γn+2 − γn+1 ≤ αn(γ2 − γ1).

Proof. Simply use {γn}, {δn}, {hn}, ϕ, a instead of {sn}, {bn}, {gn}, p, α in the proof of

Lemma 9.3.2 �

Theorem 9.3.10. Suppose that the (C∗), Lemma 9.3.9 conditions,

U ⊆ D

hold, where U was defined in Theorem 9.3.6 and ‖A−1
0 (F(x0)+ G(x0))‖ ≤ η. Then, se-

quence {xn} generated by the secant-like method (9.3.66) in well defined, remains in U

for each n = −1,0,1,2, . . . and converges to a solution x∗ ∈ U(x0,γ∗ − c) of equation

F(x)+G(x) = 0. Moreover, the following estimates are satisfied for each n = 0,1, . . .

‖xn+1−xn‖ ≤ γn+1− γn

and

‖xn −x∗‖ ≤ γ∗− γn.
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Furthermore, if there exists γ ≥ γ∗−c such that

U(x0,γ)⊆ D

and

0 <
K((λ−1)c+ γ)+M

1−Hλ(2γ−c)
≤ η, for some µ ∈ (0,1)

then, the solution x∗ is unique in U(x0,γ).

Proof. The proof until the uniqueness part follows as in Theorem 9.3.6 but using the

identity

F(xk+1)+G(xk+1) = ([xk+1,xk;F]−Ak)(xk+1−xk)+(G(xk+1)−G(xk))

instead of (9.3.61). Finally, for the uniqueness part, let y∗ ∈ U(x0,γ) be such that F(y∗)+

G(y∗) = 0. Then, we get from (9.3.66) the identity

xn+1 −y∗ = xn −A−1
n (F(xn)+(xn))−y∗

= −A−1
n (F(xn)−F(x∗)−An(xn −y∗)+(G(xn)−G(y∗)))

= −A−1
n (([xn,y∗;F ]− [yn,xn−1;F])(xn−y∗)+(G(xn)−G(y∗)).

This identity leads to

‖xn+1−y∗‖ ≤ K(‖xn−yn‖+‖xn−1 −y∗‖)+M

1−Hλ(γn+1 + γn −c)
‖xn −y∗‖

≤ K((λ−1)‖xn −xn−1‖+‖xn−1 −y∗‖)+M

1−Hλ(2γ−c)
‖xn −y∗‖

≤ K((λ−1)c+ γ)+M

1−Hλ(2γ−c)
‖xn −y∗‖ ≤ µ‖xn +y∗‖

≤ µn+1‖x0 −y∗‖ ≤ µn+1γ.

Hence, we deduce lim
n→+∞

xn = y∗. But we know that lim
n→+∞

xn = x∗. That is we conclude

x∗ = y∗, That completes the proof of the Theorem. �

9.4. Numerical Examples

Example 9.4.1. Let X = Y = C [0,1], equipped with the max-norm. Consider the following

nonlinear boundary value problem

{
u′′ = −u3 − γ u2

u(0) = 0, u(1) = 1.

It is well known that this problem can be formulated as the integral equation

u(s) = s+

Z 1

0
Q (s, t) (u3(t)+ γ u2(t)) dt (9.4.1)
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where, Q is the Green function:

Q (s, t) =

{
t (1− s), t ≤ s

s (1− t), s < t.

We observe that

max
0≤s≤1

Z 1

0
|Q (s, t)|dt =

1

8
.

Then problem (9.4.1) is in the form (9.1.1), where, F : D −→ Y is defined as

[F(x)] (s) = x(s)− s−
Z 1

0
Q (s, t) (x3(t)+ γ x2(t)) dt.

The Fréchet derivative of the operator F is given by

[F ′(x)y] (s) = y(s)−3

Z 1

0
Q (s, t)x2(t)y(t)dt−2γ

Z 1

0
Q (s, t)x(t)y(t)dt.

Then, we have that

[(I−F ′(x0))(y)](s) = 3

Z 1

0
Q (s, t)x2

0(t)y(t)dt +2γ

Z 1

0
Q (s, t)x0(t)y(t)dt.

Hence, if 2γ < 5, then

‖I −F ′(x0)‖ ≤ 2(γ−2) < 1.

It follows that F ′(x0)
−1 exists and

‖F ′(x0)
−1‖ ≤ 1

5−2γ
.

We also have that ‖F(x0)‖ ≤ 1+ γ. Define the divided difference defined by

δF(x,y) =

Z 1

0
F ′(y+ t(x−y))dt .

Choosing x−1(s) such that |x−1−x0‖ ≤ c and l0c < 1. Then we have for λ = 1

‖δF(x−1,x0)
−1F(x0)‖ ≤ ‖δF(x−1,x0)

−1F ′(x0)‖‖F ′(x0)F(x0)‖

and

‖δF(x−1,x0)
−1F ′(x0)‖ ≤

1

(1− l0c)
,

where l0 is such that

‖F ′(x0)
−1(F ′(x0)−A0)‖ ≤ l0c,

Set u0(s) = s and D = U(u0,R0). It is easy to verify that U(u0,R0) ⊂ U(0,R0 + 1) since

‖ u0 ‖= 1. If 2 γ < 5, and l0c < 1 the operator F ′ satisfies conditions of Theorem 9.2.6, with

η =
1+ γ

(1− l0c)(5−2 γ)
, K =

γ+6 R0 +3

8(5−2 γ)(1− l0c)
, H =

2 γ+3 R0 +6

16(5−2 γ)(1− l0c)
.
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Choosing R0 = 1, γ = 0.5 and c = 1 we obtain that

l0 = 0.1938137822 . . .,

η = 0.465153 . . .,

K = 0.368246 . . .

and

H = 0.193814 . . ..

Moreover we obtain that a−1 = 0.317477 and b−1 = 0.251336, but conditions of Theo-

rem 2.1 are not satisfied since

b−1 = 0.251336 > 0.147893 =
a−1(1−a−1)

2

2(1−a−1)−λ(1−2a−1)
.

Notice also that the popular condition (9.3.36) is also not satisfied, since Kc + 2
√

Kη =

1.19599 > 1. Hence, there is no guarantee under the old conditions that the secant-type

method converges to x∗. However, conditions of Lemma 9.3.1 are satisfied, since

0 < α = 0.724067≤ 0.776347 =
1−Hλ(c+2η)

1−Hλc

The convergence of the secant-type method is also ensured by Theorem 123.6.

Example 9.4.2. Let X = Y = R and let consider the real function

F(x) = x3 −2

and we are going to apply secant-type method with λ = 2.5. We take the starting points

x0 = 1, x−1 = 0.25 and we consider the domain Ω = B(x0,3/4). In this case, we obtain

c = 0.75,

η = 0.120301 . . .,

K = 0.442105 . . .,

H = 0.180451 . . .,

Notice that the conditions of Theorem 9.2.1 and Lemma 9.3.1 are satisfied, but since H < K

Remark 9.2.2 ensures that our uniqueness ball is larger. It is clear as R1 = 1.83333 . . . >
0.193452 . . .= R0.
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Chapter 10

On the Semilocal Convergence of a

Two-Step Newton-Like Projection

Method for Ill-Posed Equations

10.1. Introduction

Let X be a real Hilbert space with inner product 〈., .〉 and norm ‖.‖. Let U(x,R) and U(x,R),

stand respectively, for the open and closed ball in X with center x and radius R > 0. Let also

L(X) be the space of all bounded linear operators from X into itself.

In this chapter we are concerned with the problem of approximately solving the ill-

posed equation

F(x) = y, (10.1.1)

where F : D(F) ⊆ X → X is a nonlinear operator satisfying 〈F(v)− F(w),v − w〉 ≥
0, ∀v,w ∈ D(F), and y ∈ X .

It is assumed that (10.1.1) has a solution, namely x̂ and F possesses a locally uniformly

bounded Fréchet derivative F ′(x) for all x ∈ D(F) (cf. [18]) i.e.,

‖F ′(x)‖ ≤CF , x ∈ D(F)

for some constant CF .
In application, usually only noisy data yδ are available, such that

‖y−yδ‖ ≤ δ.

Then the problem of recovery of x̂ from noisy equation F(x) = yδ is ill-posed, in the sense

that a small perturbation in the data can cause large deviation in the solution. For solving

(10.1.1) with monotone operators (see [12, 17, 18, 19]) one usually use the Lavrentiev

regularization method. In this method the regularized approximation xδ
α is obtained by

solving the operator equation

F(x)+α(x−x0) = yδ. (10.1.2)
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It is known (cf. [19], Theorem 1.1) that the equation (10.1.2) has a unique solution xδ
α for

α > 0, provided F is Fréchet differentiable and monotone in the ball Br(x̂) ⊂ D(F) with

radius r = ‖x̂− x0‖+ δ/α. However the regularized equation (10.1.2) remains nonlinear

and one may have difficulties in solving them numerically.

In [6], George and Elmahdy considered an iterative regularization method which con-

verges linearly to xδ
α and its finite dimensional realization in [7]. Later in [8] George and

Elmahdy considered an iterative regularization method which converges quadratically to xδ
α

and its finite dimensional realization in [9].

Recall that a sequence (xn) in X with limxn = x∗ is said to be convergent of order

p > 1, if there exist positive reals β,γ, such that for all n ∈ N ‖xn − x∗‖ ≤ βe−γpn

.If the

sequence (xn) has the property that ‖xn − x∗‖ ≤ βqn, 0 < q < 1 then (xn) is said to be

linearly convergent. For an extensive discussion of convergence rate (see [13]).

Note that the method considered in [6], [7], [8] and [9] are proved using a suitably

constructed majorizing sequence which heavily depends on the initial guess and hence not

suitable for practical consideration.

Recently, George and Pareth [10] introduced a two-step Newton-like projection

method(TSNLPM) of convergence order four to solve (10.1.2). (TSNLPM) was realized

as follows:

Let {Ph}h>0 be a family of orthogonal projections on X . Our aim in this section is to

obtain an approximation for xδ
α, in the finite dimensional space R(Ph), the range of Ph. For

the results that follow, we impose the following conditions.

Let

εh(x) := ‖F ′(x)(I−Ph)‖, ∀x ∈ D(F)

and {bh : h > 0} is such that limh→0
‖(I−Ph)x0‖

bh
= 0 and limh→0bh = 0. We assume that

εh(x) → 0, ∀x ∈ D(F) as h → 0. The above assumption is satisfied if, Ph → I pointwise

and if F ′(x) is a compact operator. Further we assume that εh(x) ≤ ε0, ∀x ∈ D(F), bh ≤ b0

and δ ∈ (0,δ0].

10.1.1. Projection Method

We consider the following sequence defined iteratively by

y
h,δ
n,α = x

h,δ
n,α −R−1

α (x
h,δ
n,α)Ph[F(x

h,δ
n,α)− f δ +α(x

h,δ
n,α −x0)] (10.1.3)

and

x
h,δ
n+1,α = y

h,δ
n,α −R−1

α (y
h,δ
n,α)Ph[F(y

h,δ
n,α)− f δ +α(y

h,δ
n,α −x0)] (10.1.4)

where Rα(x) := PhF ′(x)Ph +αPh and x
h,δ
0,α := Phx0, for obtaining an approximation for xδ

α in

the finite dimensional subspace R(Ph) of X . Note that the iteration (10.1.3) and (10.1.4) are

the finite dimensional realization of the iteration (10.1.3) and (10.1.4) in [16]. In [10], the

parameter α = αi was chosen from some finite set

DN = {αi : 0 < α0 < α1 < α2 < · · ·< αN}

using the adaptive method considered by Perverzev and Schock in [17].

The convergence analysis in [10] was carried out using the following assumptions.
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Assumption 10.1.1. (cf. [18], Assumption 3) There exists a constant k0 ≥ 0 such that

for every x,u ∈ D(F) and v ∈ X there exists an element Φ(x,u,v) ∈ X such that [F ′(x)−
F ′(u)]v = F ′(u)Φ(x,u,v),‖Φ(x,u,v)‖≤ k0‖v‖‖x−u‖.

Assumption 10.1.2. There exists a continuous, strictly monotonically increasing function

ϕ : (0,a]→ (0,∞) with a ≥ ‖F ′(x̂)‖ satisfying;

(i) limλ→0ϕ(λ) = 0,

(ii) supλ≥0
αϕ(λ)
λ+α ≤ cϕϕ(α) ∀λ ∈ (0,a] and

(iii) there exists v ∈ X with ‖v‖ ≤ 1 (cf. [15]) such that

x0 − x̂ = ϕ(F ′(x̂))v.

In the present paper we extend the applicability of (TSNLPM) by weakening Assump-

tion 10.1.1 which is very difficult to verify (or does not hold) in general (see numerical

examples at the last section of the paper). In particular, we replace Assumption 10.1.1 by

the weaker and easier to verify:

Assumption 10.1.3. Let x0 ∈ X be fixed. There exists a constant K0 ≥ 0 such that for each

x,u ∈ D(F) and v ∈ X there exists an element Φ(x,u,v) ∈ X depending on x0 such that

[F ′(x)−F ′(u)]v = F ′(u)Φ(x,u,v),‖Φ(x,u,v)‖≤ K0‖v‖(‖x−Phx0‖+‖u−Phx0‖).

Note that Assumption 10.1.1⇒ Assumption 10.1.3 but not necessarily vice versa. At

the end of the chapter we have provided examples, where Assumption 10.1.3 is satisfied but

not Assumption 10.1.1.

We also replace Assumption 10.1.2 by

Assumption 10.1.4. There exists a continuous, strictly monotonically increasing function

ϕ : (0,a]→ (0,∞) with a ≥ ‖F ′(x0)‖ satisfying;

(i) limλ→0ϕ(λ) = 0,

(ii) supλ≥0
αϕ(λ)
λ+α ≤ ϕ(α) ∀λ ∈ (0,a] and

(iii) there exists v ∈ X with ‖v‖ ≤ 1 (cf. [15]) such that

x0 − x̂ = ϕ(F ′(x0))v.

Remark 10.1.5. The hypotheses of Assumption 10.1.1 may not hold or may be very ex-

pensive or imposible to verify in general. In particular, as it is the case for well-posed

nonlinear equations the computation of the Lipschitz constant k0 even if this constant exists

is very difficult. Moreover, there are classes of operators for which Assumption 10.1.1 is

not satisfied but the (TSNLPM) converges.

In this paper, we expand the applicability of (TSNLPM) under less computational cost.

Let us explain how we achieve this goal.

(1) Assumption 10.1.3 is weaker than Assumption 10.1.1. Notice that there are classes of

operators that satisfy Assumption 10.1.3 but do not satisfy Assumption 10.1.1;
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(2) The computational cost of constant K0 is less than that of constant k0, even when

K0 = k0;

(3) The sufficient convergence criteria are weaker;

(4) The computable error bounds on the distances involved (including K0) are less costly;

(5) The convergence domain of (TSNLPM) with Assumption 10.1.3 can be larger, since
K0

k0
can be arbitrarily small (see Example 10.5.4);

(6) The information on the location of the solution is more precise;

and

(7) Note that the Assumption 10.1.2 involves the Fréchet derivative at the exact solu-

tion x̂ which is unknown in practice. But Assumption 10.1.4 depends on the Fréchet

derivative of F at x0.

These advantages are also very important in computational mathematics since they

provide under less computational cost.

The paper is organization as follows: In Section 10.2 we present the convergence anal-

ysis of (TSNLPM). Section 10.3 contains the error analysis and parameter choice strategy.

The algorithm for implementing(TSNLPM) is given in Section 10.4. Finally, numerical

examples are presented in the concluding Section 10.5.

10.2. Semilocal Convergence

In order for us to present the semilocal convergence of (TSNLPM) it is convenient to intro-

duce some parameters:

Let

e
h,δ
n,α := ‖y

h,δ
n,α −x

h,δ
n,α‖, ∀n ≥ 0. (10.2.1)

Suppose that

0 < K0 <
1

4(1+ ε0

α0
)

(10.2.2)

and
4δ0

α0

(1+
ε0

α0

) < 1. (10.2.3)

Define polynomial P on (0,∞) by

P(t) = (1+
ε0

α0

)
K0

2
t2 +(1+

ε0

α0

)t +
δ0

α0

− 1

4(1+ ε0

α0
)
. (10.2.4)
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It follows from (10.2.3) that P has a unique positive root given in closed form by the

quadratic formula. Denote this root by p0.
Let

b0 < p0,‖x̂−x0‖ ≤ ρ, (10.2.5)

where

ρ < p0 −b0. (10.2.6)

γρ := (1+
ε0

α0

)

[
k0

2
(ρ+b0)

2 +(ρ+b0)

]
+

δ0

α0

, (10.2.7)

r :=
4γρ

1+
√

1+32γρ(1+ ε0

α0
)

(10.2.8)

and

b := 4(1+
ε0

α0

)K0r. (10.2.9)

Then we have by (10.2.2)-(10.2.9) that

0 < γρ <
1

4
. (10.2.10)

0 < r < 1 (10.2.11)

and

0 < b < 1. (10.2.12)

Indeed, we have by (10.2.4) and (10.2.12) that γρ − 1
4
≤ P(p0) = 0 ⇒ 0 < γρ < 1

4
⇒

(10.2.10). Estimate (10.2.11) follows from (10.2.8) and (10.2.10). Moreover, estimate

(10.2.12) follows from (10.2.2) and (10.2.11). We also have that

γρ < r. (10.2.13)

In view of (10.2.7) and (10.2.8), estimate (10.2.13) reduces to showing that 4γρ(1+ ε0

α0
) < 1

which is true by the choice of p0 and (10.2.4). Finally it follows from (10.2.13) that

0 < γρ < 1. (10.2.14)

Lemma 10.2.1. ([10], Lemma1)Let x ∈ D(F). Then

‖R−1
α (x)PhF ′(x)‖ ≤ (1+

ε0

α0

).

Lemma 10.2.2. ([10], Lemma 2) Let e0 = e
h,δ
0,α and γρ be as in (10.2.7). Then

e0 ≤ γρ.

Lemma 10.2.3. Suppose that (10.2.2), (10.2.3) and δ ∈ (0,δ0] hold and let Assumption

10.1.3 be satisfied. Then the following estimates hold for (TSNLPM):
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(a)

‖x
h,δ
n,α −y

h,δ
n−1,α‖ ≤ K0

2
(1+

ε0

α0

)[3‖x
h,δ
n−1,α−x

h,δ
0,α‖ (10.2.15)

+5‖y
h,δ
n−1,α−x

h,δ
0,α‖]e

h,δ
n−1,α (10.2.16)

and

(b)

‖x
h,δ
n,α −x

h,δ
n−1,α‖ ≤ {1+

K0

2
(1+

ε0

α0

)[3‖x
h,δ
n−1,α−x

h,δ
0,α‖ (10.2.17)

+5‖y
h,δ
n−1,α −x

h,δ
0,α‖]}e

h,δ
n−1,α. (10.2.18)

Proof. Observe that,

x
h,δ
n,α −y

h,δ
n−1,α

= y
h,δ
n−1,α −x

h,δ
n−1,α −R−1

α (y
h,δ
n−1,α)Ph

[F(y
h,δ
n−1,α)− f δ +α(y

h,δ
n−1,α−x0)]+R−1

α (x
h,δ
n−1,α)

Ph[F(x
h,δ
n−1,α)− f δ +α(x

h,δ
n−1,α−x0)]

= y
h,δ
n−1,α −x

h,δ
n−1,α −R−1

α (y
h,δ
n−1,α)Ph

[F(y
h,δ
n−1,α)−F(x

h,δ
n−1,α)+α(y

h,δ
n−1,α−x

h,δ
n−1,α)]

+[R−1
α (x

h,δ
n−1,α)−R−1

α (y
h,δ
n−1,α)]Ph[F(x

h,δ
n−1,α)− f δ

+α(x
h,δ
n−1,α−x0)]

= R−1
α (y

h,δ
n−1,α)Ph[F

′(y
h,δ
n−1,α)(y

h,δ
n−1,α−x

h,δ
n−1,α)

−(F(y
h,δ
n−1,α)−F(x

h,δ
n−1,α))]+R−1

α (y
h,δ
n−1,α)Ph

(F ′(y
h,δ
n−1,α)−F ′(x

h,δ
n−1,α))(x

h,δ
n−1,α−y

h,δ
n−1,α)

:= Γ1 +Γ2 (10.2.19)

where

Γ1 := R−1
α (y

h,δ
n−1,α)Ph[F

′(y
h,δ
n−1,α)(y

h,δ
n−1,α−x

h,δ
n−1,α)

−(F(y
h,δ
n−1,α)−F(x

h,δ
n−1,α))]

and

Γ2 := R−1
α (y

h,δ
n−1,α)Ph[F

′(y
h,δ
n−1,α)−F ′(x

h,δ
n−1,α)]

(x
h,δ
n−1,α−y

h,δ
n−1,α).
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Note that,

‖Γ1‖ = ‖R−1
α (y

h,δ
n−1,α)Ph

Z 1

0
[F ′(y

h,δ
n−1,α)−F ′(x

h,δ
n−1,α

+t(y
h,δ
n−1,α−x

h,δ
n−1,α))](yh,δ

n−1,α−x
h,δ
n−1,α)dt‖

= ‖R−1
α (y

h,δ
n−1,α)PhF ′(y

h,δ
n−1,α)

Z 1

0
[φ(x

h,δ
n−1,α +

t(y
h,δ
n−1,α−x

h,δ
n−1,α),y

h,δ
n−1,α,x

h,δ
n−1,α −y

h,δ
n−1,α)]dt‖

≤ K0(1+
ε0

α0

)[

Z 1

0
‖x

h,δ
n−1,α−x

h,δ
0,α (10.2.20)

−t(y
h,δ
n−1,α−x

h,δ
n−1,α)‖dt +‖y

h,δ
n−1,α −x

h,δ
0,α‖]

×‖y
h,δ
n−1,α−x

h,δ
n−1,α‖

≤ K0(1+
ε0

α0

)[

Z 1

0
(1− t)‖x

h,δ
n−1,α−x

h,δ
0,α‖

+t‖y
h,δ
n−1,α)−x

h,δ
0,α‖+‖y

h,δ
n−1,α)−x

h,δ
0,α‖]dt

×‖y
h,δ
n−1,α−x

h,δ
n−1,α‖

≤ K0

2
(1+

ε0

α0

)[‖x
h,δ
n−1,α−x

h,δ
0,α‖

+3‖y
h,δ
n−1,α)−x

h,δ
0,α‖]e

h,δ
n−1,α

the last step follows from the Assumption 10.1.3 and Lemma 10.2.1. Similarly,

‖Γ2‖ ≤ K0(1+
ε0

α0

)[‖y
h,δ
n−1,α−x

h,δ
0,α‖+‖x

h,δ
0,α −x

h,δ
n−1,α‖]e

h,δ
n−1,α (10.2.21)

So, (a) follows from (10.2.19), (10.2.20) and (10.2.21). And (b) follows from (a) and the

triangle inequality;

‖x
h,δ
n,α −x

h,δ
n−1,α‖ ≤ ‖x

h,δ
n,α −y

h,δ
n−1,α‖+‖y

h,δ
n−1,α −x

h,δ
n−1,α‖.

Theorem 10.2.4. Under the hypotheses of Lemma 10.2.3 the following estimates hold for

(TSNLPM):

e
h,δ
n,α ≤ K0

2
(1+

ε0

α0

)[5‖x
h,δ
n,α−x

h,δ
0,α‖

+3‖y
h,δ
n−1,α)−x

h,δ
0,α‖]‖y

h,δ
n−1,α−x

h,δ
n,α‖

≤ b2e
h,δ
n−1,α ≤ b2ne

h,δ
0,α ≤ b2nγρ.
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Proof. We have,

y
h,δ
n,α −x

h,δ
n,α = x

h,δ
n,α −y

h,δ
n−1,α −R−1

α (x
h,δ
n,α)Ph

[F(x
h,δ
n,α)− f δ +α(x

h,δ
n,α −x0)]+R−1

α (y
h,δ
n−1,α)

Ph[F(y
h,δ
n−1,α)− f δ +α(y

h,δ
n−1,α−x0)]

= x
h,δ
n,α −y

h,δ
n−1,α −R−1

α (x
h,δ
n,α)Ph

[F(x
h,δ
n,α)−F(y

h,δ
n−1,α)+α(x

h,δ
n,α −y

h,δ
n−1,α)]

+[R−1
α (y

h,δ
n−1,α)−R−1

α (x
h,δ
n,α)]Ph[F(y

h,δ
n−1,α)− f δ

+α(y
h,δ
n−1,α−x0)]

= R−1
α (x

h,δ
n,α)Ph[F

′(x
h,δ
n,α)(x

h,δ
n,α −y

h,δ
n−1,α)

−(F(x
h,δ
n,α)−F(y

h,δ
n−1,α))]+R−1

α (x
h,δ
n,α)Ph

[F ′(x
h,δ
n,α)−F ′(y

h,δ
n−1,α)]× (y

h,δ
n−1,α −x

h,δ
n,α)

:= Γ3 +Γ4 (10.2.22)

where Γ3 = R−1
α (x

h,δ
n,α)Ph[F

′(x
h,δ
n,α)(x

h,δ
n,α − y

h,δ
n−1,α) − (F(x

h,δ
n,α) − F(y

h,δ
n−1,α))]andΓ4 =

R−1
α (x

h,δ
n,α)Ph[F

′(x
h,δ
n,α)−F ′(y

h,δ
n−1,α)](yh,δ

n−1,α− x
h,δ
n,α). Analogous to the proof of (10.2.20) and

(10.2.21) one can prove that

‖Γ3‖ ≤ K0

2
(1+

ε0

α0

)[3‖x
h,δ
n,α−x

h,δ
0,α‖

+‖y
h,δ
n−1,α −x

h,δ
0,α‖]‖x

h,δ
n,α−y

h,δ
n−1,α‖ (10.2.23)

and

‖Γ4‖ ≤ K0(1+
ε0

α0

)[‖x
h,δ
n,α−x

h,δ
0,α‖+‖y

h,δ
n−1,α −x

h,δ
0,α‖]‖x

h,δ
n,α −y

h,δ
n−1,α‖

Now

e
h,δ
n,α ≤ K0

2
(1+

ε0

α0

)[5‖x
h,δ
n,α−x

h,δ
0,α‖

+3‖y
h,δ
n−1,α−x

h,δ
0,α‖]‖x

h,δ
n,α−y

h,δ
n−1,α‖ (10.2.24)

≤ K0

2
(1+

ε0

α0

)(8r)
K0

2
(1+

ε0

α0

)(8r)‖x
h,δ
n−1,α−y

h,δ
n−1,α‖

≤ b2‖x
h,δ
n−1,α −y

h,δ
n−1,α‖

≤ b2ne
h,δ
0,α ≤ b2nγρ.

This completes the proof of the theorem.

Theorem 10.2.5. Suppose that the hypotheses of Theorem 10.2.4 hold. Then, sequences

{x
h,δ
n,α}, {y

h,δ
n,α} generated by (TSNLPM) are well defined and remain in U(Phx0, r) for all

n ≥ 0.
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Proof. Note that by (b) of Lemma 10.2.3 we have,

‖x
h,δ
1,α −Phx0‖ = ‖x

h,δ
1,α −x

h,δ
0,α‖

≤ [1+(1+
ε0

α0

)
K0

2
(8r)]γρ (10.2.25)

≤ (1+b)γρ

≤ 1−b2

1−b
γρ < r,

i.e., x
h,δ
1,α ∈ Br(Phx0). Again note that from (10.2.25) and Theorem 10.2.4 we get,

‖y
h,δ
1,α −Phx0‖ ≤ ‖y

h,δ
1,α −x

h,δ
1,α‖+‖x

h,δ
1,α −Phx0‖

≤ [1+(1+
ε0

α0

)4K0r +((1+
ε0

α0

)4K0r)2]γρ

≤ (1+b+b2)γρ

≤ 1−b2

1−b
γρ < r,

i.e., y
h,δ
1,α ∈ Br(Phx0). Further by (10.2.25) and (b) of Lemma 10.2.3 we have,

‖x
h,δ
2,α −Phx0‖ ≤ ‖x

h,δ
2,α −x

h,δ
1,α‖+‖x

h,δ
1,α −Phx0‖

≤ (1+b)γρ +(1+b)γρ

= 2(1+b)γρ < r

and

‖y
h,δ
2,α −Phx0‖ ≤ ‖y

h,δ
2,α −x

h,δ
2,α‖+‖x

h,δ
2,α −Phx0‖

≤ b4γρ +2(1+b)γρ

≤ b2γρ +2(1+b)γρ

≤ [
1−b3

1−b
+

1−b2

1−b
]γρ

(since b < 1)

<
2γρ

1−b
< r

by the choice of r, i.e., x
h,δ
2,α, y

h,δ
2,α ∈ Br(Phx0). Continuing this way one can prove that x

h,δ
n,α,

y
h,δ
n,α ∈ Br(Phx0),∀n ≥ 0. This completes the proof.

Theorem 10.2.6. Suppose that the hypotheses of Theorem 10.2.5 hold. Then the following

assertions hold

(a) {x
h,δ
n,α} is a complete sequence in U(Phx0, r) and converges to x

h,δ
α ∈U(Phx0, r).

(b) Ph[F(x
h,δ
α )+α(x

h,δ
α −x0)] = Phyδ.
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(c)

‖x
h,δ
n,α −x

h,δ
α ‖ ≤

(1+b)b2nγρ

1−b2

where γρ and b are defined by (10.2.7) and (10.2.9), respectively.

Proof. We have that

‖x
h,δ
n+i+1,α−x

h,δ
n+i,α‖

≤ (1+b)b0‖x
h,δ
n+i,α −y

h,δ
n+i,α‖

≤ (1+b)b‖x
h,δ
n+i,α −y

h,δ
n+i−1,α‖

≤ (1+b)b2‖x
h,δ
n+i−1,α −y

h,δ
n+i,α‖

≤ (1+b)b2(n+i)e
h,δ
0,α

≤ (1+b)b2(n+i)γρ.

So,

‖x
h,δ
n+m,α −x

h,δ
n,α‖ ≤

m−1

∑
i=0

‖x
h,δ
n+i+1,α −x

h,δ
n+i,α‖

≤ (1+b)b2n
m−1

∑
i=0

b2i

= (1+b)b2n 1−b2m

1−b2
γρ → (1+b)b2n

1−b2
γρ,

as m → ∞. Thus x
h,δ
n,α is a Cauchy sequence in U(Phx0, r) and hence it converges, say to

x
h,δ
α ∈U(Phx0, r).

Observe that,

‖Ph[F(x
h,δ
n,α)− f δ +α(x

h,δ
n,α −x0)]‖

= ‖Rα(x0)(x
h,δ
n,α −y

h,δ
n,α)‖

≤ ‖Rα(x0)‖‖x
h,δ
n,α−y

h,δ
n,α‖

= ‖(PhF ′(x
h,δ
n,α)Ph +αPh)‖e

h,δ
n,α

≤ (CF +α)e
h,δ
n,α. (10.2.26)

Now by letting n → ∞ in (10.2.26) we obtain

Ph[F(x
h,δ
α )+α(x

h,δ
α −x0)] = Phyδ. (10.2.27)

This completes the proof.

Remark 10.2.7. (a) The convergence order of (TSNLPM) is four [10], under Assump-

tion 10.1.1. In Theorem 10.2.6 the error bounds are too pessimistic. That is why in
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practice we shall use the computational order of convergence (COC) (see eg. [5])

defined by

ρ ≈ ln

(
‖xn+1−xδ

α‖
‖xn −xδ

α‖

)
/ ln

(
‖xn −xδ

α‖
‖xn−1−xδ

α‖

)
.

The (COC) ρ will then be close to 4 which is the order of convergence of (TSNLPM).

(b) Note that from the proof of the Theorem 10.2.5 a larger r can be obtained from solving

the equation

[b4t +2(1+bt)]γρ − rt = 0.

Note that this equation has a minimal root r∗ > r. Then, r∗ can replace r in Theorem

10.2.5. However, we decided to use r which is given in closed form. Using, Mathe-

matica or Maple we found r∗ in closed form. But it has a complicated and long form.

That is why we decided not to include r in this paper.

10.3. Error Bounds under Source Conditions

The objective of this section is to obtain an error estimate for ‖x
h,δ
n,α − x̂‖ under a source

condition on x0 − x̂.

Proposition 10.3.1. Let F : D(F) ⊆ X → X be a monotone operator in X . Let x
h,δ
α be the

solution of (10.2.27) and xh
α := x

h,0
α . Then

‖x
h,δ
α −xh

α‖ ≤
δ

α
.

Proof. The result follows from the monotonicity of F and the relation;

Ph[F(x
h,δ
α )−F(xh

α)+α(x
h,δ
α −xh

α)] = Ph(yδ −y).

Theorem 10.3.2. Let ρ < 2

K0(1+
ε0
α0

)
and x̂ ∈ D(F) be a solution of (10.1.1). And let As-

sumption 10.1.3, Assumption 10.1.4 and the assumptions in Proposition 10.3.1 be satisfied.

Then

‖xh
α − x̂‖ ≤ C̃(ϕ(α)+

εh

α
)

where C̃ :=
max{1+(1+

ε0
α0

)K0(2b0+ρ),ρ+‖x̂‖}
1−(1+

ε0
α0

)
K0
2

ρ
.

Proof. Let M :=
R 1

0 F ′(x̂+ t(xh
α − x̂))dt. Then from the relation

Ph[F(xh
α)−F(x̂)+α(xh

α −x0)] = 0

we have,

(PhMPh +αPh)(xh
α − x̂) = Phα(x0 − x̂)+PhM(I−Ph)x̂.
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Hence,

xh
α − x̂ = [(PhMPh +αPh)

−1Ph − (F ′(x0)+αI)−1]α(x0 − x̂)

+(F ′(x0)+αI)−1α(x0− x̂)

+(PhMPh +αPh)
−1PhM(I−Ph)x̂

= (PhMPh +αPh)
−1Ph[F

′(x0)−M +M(I −Ph)]

(F ′(x0)+αI)−1α(x0 − x̂)

+(F ′(x0)+αI)−1α(x0− x̂)

+(PhMPh +αPh)
−1PhM(I−Ph)x̂

:= ζ1 +ζ2 (10.3.1)

where ζ1 = (PhMPh +αPh)
−1Ph[F

′(x0)−M +M(I−Ph)](F
′(x0)+αI)−1α(x0− x̂)andζ2 =

(F ′(x0)+αI)−1α(x0 − x̂)+(PhMPh +αPh)
−1PhM(I −Ph)x̂. Observe that,

‖ζ1‖ ≤ ‖(PhMPh +αPh)
−1Ph

Z 1

0
[F ′(x0)−F ′(x̂

+t(xh
α − x̂))]dt(F′(x0)+αI)−1α(x0 − x̂)‖

+‖(PhMPh +αPh)
−1PhM(I−Ph)

(F ′(x0)+αI)−1α(x0 − x̂)‖
≤ ‖(PhMPh +αPh)

−1Ph
Z 1

0
[F ′(x̂+ t(xh

α − x̂))(Ph + I −Ph)

φ(x0, x̂+ t(xh
α − x̂), (F′(x0)+αI)−1α(x0 − x̂))]dt‖+

εh

α
ρ

where, here and below εh := εh(x̂+ t(xh
α − x̂)). So

‖ζ1‖ ≤ (1+
εh

α
)K0

Z 1

0
[‖x0−Phx0‖+‖x̂ + t(xh

α − x̂)−Phx0‖]

‖F ′(x0)+αI)−1α(x0 − x̂))‖+
εh

α
ρ

≤ (1+
εh

α
)K0[(b0 +‖x̂−x0 +x0 −Phx0‖)ϕ(α)+

1

2
‖xh

α − x̂‖ρ]+
εh

α
ρ

≤ (1+
εh

α
)K0[(2b0 +ρ)ϕ(α)+

1

2
‖xh

α − x̂‖ρ]+
εh

α
ρ (10.3.2)

and

‖ζ2‖ ≤ ϕ(α)+
εh

α
‖x̂‖. (10.3.3)

The result now follows from (10.3.1), (10.3.2) and (10.3.3).

Theorem 10.3.3. Let x
h,δ
n,α be as in (10.1.4). And the assumptions in Theorem 10.2.6 and

Theorem 10.3.2 hold. Then

‖x
h,δ
n,α − x̂‖ ≤ 1+b

1−b2
γρb2n +max{1,C̃}(ϕ(α)+

δ+εh

α
).
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Proof. Observe that,

‖x
h,δ
n,α − x̂‖ ≤ ‖x

h,δ
n,α −x

h,δ
α ‖+‖x

h,δ
α −xh

α‖+‖xh
α − x̂‖

so, by Proposition 10.3.1, Theorem 10.2.6 and Theorem 10.3.2 we obtain,

‖x
h,δ
n,α − x̂‖ ≤ 1+b

1−b2
γρb2n +

δ

α
+C̃(ϕ(α)+

εh

α
)

≤ 1+b

1−b2
γρb2n +max{1,C̃}(ϕ(α)+

δ+εh

α
).

Let

nδ := min

{
n : b2n ≤ δ+εh

α

}
(10.3.4)

and

C0 =
1+b

1−b2
γρ +max{1,C̃}. (10.3.5)

Theorem 10.3.4. Let nδ and C0 be as in (10.3.4) and (10.3.5) respectively. And let x
h,δ
nδ,α be

as in (10.1.4) and the assumptions in Theorem 10.3.3 be satisfied. Then

‖x
h,δ
nδ,α − x̂‖ ≤C0(ϕ(α)+

δ+εh

α
). (10.3.6)

10.3.1. A Priori Choice of the Parameter

Let ψ(λ) := λϕ−1(λ),0 < λ ≤ a. Then the choice

αδ = ϕ−1(ψ−1(δ+εh)),

gives the optimal order error estimate (see [10]) for ϕ(α)+ δ+εh

α . So the relation (10.3.6)

leads to the following.

Theorem 10.3.5. Let ψ(λ) := λϕ−1(λ) for 0 < λ ≤ a, and the assumptions in Theorem

10.3.4 hold. For δ > 0, let αδ = ϕ−1(ψ−1(δ+εh)) and let nδ be as in (10.3.4). Then

‖x
h,δ
nδ,α − x̂‖ = O(ψ−1(δ+εh)).

10.3.2. An Adaptive Choice of the Parameter

As in [10], the parameter α is chosen according to the balancing principle studied in [14],

[17], i.e., the parameter α is selected from some finite set

DN(α) := {αi = µiα0, i = 0,1, · · · ,N}

where µ > 1, α0 > 0 and let

ni := min

{
n : b2n ≤ δ+εh

αi

}
.
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Then for i = 0,1, · · · ,N, we have

‖x
h,δ
ni,αi

−x
h,δ
αi
‖ ≤ C

δ+εh

αi

, ∀i = 0,1, · · ·N.

Let xi := x
h,δ
ni,αi

. In this paper we select α = αi from DN(α) for computing xi, for each

i = 0,1, · · · ,N.

Theorem 10.3.6. (cf. [18], Theorem 3.1) Assume that there exists i ∈ {0,1,2, · · · ,N} such

that ϕ(αi)≤ δ+εh

αi
. Let the assumptions of Theorem 10.3.4 and Theorem 10.3.5 hold and let

l := max

{
i : ϕ(αi)≤

δ+εh

αi

}
< N,

k := max{i : ‖xi −x j‖ ≤ 4C0

δ+εh

α j

, j = 0,1,2, · · · , i}.

Then l ≤ k and ‖x̂−xk‖ ≤ cψ−1(δ+εh) where c = 6C0µ.

10.4. Implementation of Adaptive Choice Rule

The balancing algorithm associated with the choice of the parameter specified in Theorem

10.3.6 involves the following steps:

• Choose α0 > 0 such that δ0 < α0 and µ > 1.

• Choose αi := µiα0, i = 0,1,2, · · · ,N.

10.4.1. Algorithm

1. Set i = 0.

2. Choose ni := min

{
n : b2n ≤ δ+εh

αi

}
.

3. Solve xi := x
h,δ
ni,αi

by using the iteration (10.1.3) and (10.1.4).

4. If ‖xi −x j‖ > 4C0
δ+εh

α j
, j < i, then take k = i−1 and return xk.

5. Else set i = i+1 and go to 2.

10.5. Numerical Example

In this section we consider the example considered in [18] for illustrating the algorithm

considered in section IV. We apply the algorithm by choosing a sequence of finite dimen-

sional subspace (Vn) of X with dimVn = n + 1. Precisely we choose Vn as the linear span

of {v1,v2, · · · ,vn+1} where vi, i = 1,2, · · · ,n + 1 are the linear splines in a uniform grid of

n+1 points in [0,1] (see [10] for details).
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Example 10.5.1. (see [18], section 4.3) Let F : D(F) ⊆ L2(0,1)−→ L2(0,1) defined by

F(u) :=
Z 1

0
k(t, s)u3(s)ds,

where

k(t, s) =

{
(1− t)s, 0 ≤ s ≤ t ≤ 1

(1− s)t, 0 ≤ t ≤ s ≤ 1
.

Then for all x(t),y(t) : x(t) > y(t) :

〈F(x)−F(y),x−y〉 =

Z 1

0

[
Z 1

0
k(t, s)(x3−y3)(s)ds

]

×(x−y)(t)dt ≥ 0.

Thus the operator F is monotone. The Fréchet derivative of F is given by

F ′(u)w = 3

Z 1

0
k(t, s)u2(s)w(s)ds. (10.5.1)

As in [10] one can see that F ′ satisfies the Assumption 10.1.2. In our computation, we take

f (t) = (t − t11)/110 and f δ = f +δ. Then the exact solution

x̂(t) = t3.

We use

x0(t) = t3 +
3

56
(t− t8)

as our initial guess, so that the function x0 − x̂ satisfies the source condition

x0 − x̂ = ϕ(F ′(x̂))1

where ϕ(λ) = λ.
For the operator F ′(.) defined in (10.5.1), εh = O(n−2) (cf. [11]). Thus we expect to

obtain the rate of convergence O((δ+εh)
1
2 ).

We choose α0 = (1.1)(δ+ εh), µ = 1.1, ρ = 0.11, γρ = 0.7818 and b = 0.99. The re-

sults of the computation are presented in Table 1. The plots of the exact solution and the

approximate solution obtained are given in Figures 1 and 2.

Example 10.5.2. Let X = Y = R, D = [0,∞),x0 = 1 and define function F on D by

F(x) =
x1+ 1

i

1+ 1
i

+c1x+c2 , (10.5.2)

where c1,c2 are real parameters and i > 2 an integer. Then F ′(x) = x1/i+c1 is not Lipschitz

on D. However Assumption 10.1.3 holds for K0 = 1.



202 Ioannis K. Argyros and Á. Alberto Magreñán

n=8 n=16

n=32 n=64

Figure 10.5.1. Curves of the exact and approximate solutions.

n=128 n=256

n=512 n=1024

Figure 10.5.2. Curves of the exact and approximate solutions.

Indeed, we have

‖F ′(x)−F ′(x0)‖ = |x1/i−x
1/i

0 |

=
|x−x0|

x
i−1

i

0 + · · ·+x
i−1

i

so

‖F ′(x)−F ′(x0)‖ ≤ K0|x−x0|.
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Table 10.5.1. Iterations and corresponding error estimates

n k nk δ+εh α ‖xk − x̂‖ ‖xk−x̂‖
(δ+εh)1/2

8 2 2 0.0134 0.0178 0.2217 1.9158

16 2 2 0.0133 0.0178 0.1835 1.5885

32 2 2 0.0133 0.0177 0.1383 1.1981

64 2 2 0.0133 0.0177 0.0998 0.8647

128 2 2 0.0133 0.0177 0.0699 0.6051

256 30 2 0.0133 0.2559 0.0470 0.4070

512 30 2 0.0133 0.2559 0.0290 0.2509

1024 30 2 0.0133 0.2559 0.0121 0.1049

Example 10.5.3. We consider the integral equations

u(s) = f (s)+λ

Z b

a
G(s, t)u(t)1+1/ndt, n ∈ N. (10.5.3)

Here, f is a given continuous function satifying f (s) > 0, s ∈ [a,b],λ is a real number, and

the kernel G is continuous and positive in [a,b]× [a,b].

For example, when G(s, t) is the Green kernel, the corresponding integral equation is

equivalent to the boundary value problem

u′′ = λu1+1/n

u(a) = f (a),u(b) = f (b).

These type of problems have been considered in [1]- [5].

Equation of the form (10.5.3) generalize equations of the form

u(s) =
Z b

a
G(s, t)u(t)ndt (10.5.4)

studied in [1]-[5]. Instead of (10.5.3) we can try to solve the equation F(u) = 0 where

F : Ω ⊆ C[a,b]→ C[a,b],Ω = {u ∈ C[a,b] : u(s)≥ 0, s ∈ [a,b]},

and

F(u)(s) = u(s)− f (s)−λ

Z b

a
G(s, t)u(t)1+1/ndt.

The norm we consider is the max-norm.

The derivative F ′ is given by

F ′(u)v(s) = v(s)−λ(1+
1

n
)

Z b

a
G(s, t)u(t)1/nv(t)dt, v ∈ Ω.
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First of all, we notice that F ′ does not satisfy a Lipschitz-type condition in Ω. Let us con-

sider, for instance, [a,b] = [0,1],G(s,t)= 1 and y(t) = 0. Then F ′(y)v(s) = v(s) and

‖F ′(x)−F ′(y)‖= |λ|(1+
1

n
)

Z b

a
x(t)1/ndt.

If F ′ were a Lipschitz function, then

‖F ′(x)−F ′(y)‖ ≤ L1‖x−y‖,

or, equivalently, the inequality

Z 1

0
x(t)1/ndt ≤ L2 max

x∈[0,1]
x(s), (10.5.5)

would hold for all x ∈ Ω and for a constant L2. But this is not true. Consider, for example,

the functions

x j(t) =
t

j
, j ≥ 1, t ∈ [0,1].

If these are substituted into (10.5.5)

1

j1/n(1+1/n)
≤ L2

j
⇔ j1−1/n ≤ L2(1+1/n), ∀ j ≥ 1.

This inequality is not true when j → ∞.

Therefore, condition (10.5.5) is not satisfied in this case. However, Assumption 10.1.3

holds. To show this, let x0(t) = f (t) and γ = mins∈[a,b] f (s),α > 0 Then for v ∈ Ω,

‖[F ′(x)−F ′(x0)]v‖ = |λ|(1+
1

n
) max

s∈[a,b]
|
Z b

a
G(s, t)(x(t)1/n− f (t)1/n)v(t)dt|

≤ |λ|(1+
1

n
) max

s∈[a,b]
Gn(s, t)

where Gn(s, t) = G(s,t)|x(t)− f (t)|
x(t)(n−1)/n+x(t)(n−2)/n f (t)1/n+···+ f (t)(n−1)/n ‖v‖.

Hence,

‖[F ′(x)−F ′(x0)]v‖ =
|λ|(1+1/n)

γ(n−1)/n
max

s∈[a,b]

Z b

a
G(s, t)dt‖x−x0‖

≤ K0‖x−x0‖,

where K0 = |λ|(1+1/n)

γ(n−1)/n N and N = maxs∈[a,b]

R b
a G(s, t)dt. Then Assumption 10.1.3 holds for

sufficiently small λ.

Example 10.5.4. Let X = D(F) = R, x0 = 0, and define function F on D(F) by

F(x) = d0x+d1 +d2 sined3x,

where d0,d1,d2 and d3 are given parameters. Then, it can easily be seen that for d3 suffi-

ciently large and d1 sufficiently small, K0

k0
can be arbitrarily small.
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Chapter 11

New Approach to Relaxed Proximal

Point Algorithms Based on

A−Maximal

11.1. Introduction

Let X be a real Hilbert space with the norm ‖·‖ and the inner product 〈., .〉.Here we consider

the inclusion problem of the form: find a solution to

0 ∈ M(x), (11.1.1)

where M : X → 2X is a set-valued mapping on X .
Based on the work of Rockafellar [11] on the proximal point algorithm and its applica-

tions to certain computational methods, Eckstein and Bertsekas [3] introduced the relaxed

proximal point algorithm and then they applied to the Douglas-Rachford splitting method

for finding zero of the sum of two monotone operators. Furthermore, they showed that it

was, in fact, a special case of the proximal point algorithm. Fukushima [6] applied the pri-

mal Douglas-Rachford splitting method for a class of monotone operators with applications

to the traffic equilibrium problem.

Highly motivated by these algorithmic developments (see [1-18] and references

therein), we generalize the relaxed proximal point algorithm based on the notions of A−
maximal monotonicity (also referred to as A−monotonicity in literature [16]) and (A,η)−
maximal monotonicity (also referred to as (A,η)−monotonicity [15]) for solving general

inclusion problems in Hilbert space settings. These concepts generalize the general theory

of maximal monotone set-valued mappings in a Hilbert space setting. Our approach differs

significantly than the one used by Rockafellar [11], where the locally Lipschitz type con-

dition on the mapping M−1 is imposed achieving the convergence rate estimate. The main

ingredients for our approach consist of the more generalized framework for the relaxed

proximal point algorithm based on the A−maximal monotonicity, and considering the con-

vergence rate as a quadratic polynomial in terms of αk, where {αk} is a scalar sequence.

The notion of A−maximal monotonicity was introduced and studied by Verma [16]

in the context of solving variational inclusion problems using the resolvent operator tech-
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nique, while this work was followed by an accelerated research developments. Furthermore

it generalizes the existing theory of maximal monotone operators (based on the classical

resolvent), including the H−maximal monotonicity by Fang and Huang [4] that concerns

with the generalization of the classical maximal monotonicity. Fang and Huang [4] in-

troduced the notion of H−maximal monotonicity, while investigating the solvability of a

general class of inclusion problems. They applied (H,η)−maximal monotonicity [5] in the

context of approximating the solutions of inclusion problems using the generalized resol-

vent operator technique. The generalized resolvent operator technique is equally effective

applying to several other problems, such as equilibria problems in economics, global op-

timization and control theory, operations research, mathematical finance, management and

decision sciences, mathematical programming, and engineering science. For more details

on the resolvent operator technique and its applications, and further developments, we refer

the reader to [1- 33] and references therein.

11.2. A−Maximal Monotonicity and Auxiliary Results

In this section we discuss some results based on the basic properties and auxiliary results on

A− maximal monotonicity (also referred to as A− monotonicity in literature) and its variant

forms. Let M : X → 2X be a multivalued mapping on X . We shall denote both the map M

and its graph by M, that is, the set {(x,y) : y ∈ M(x)}. This is equivalent to stating that a

mapping is any subset M of X ×X , and M(x) = {y : (x,y) ∈ M}. If M is single-valued, we

shall still use M(x) to represent the unique y such that (x,y) ∈ M rather than the singleton

set {y}. This interpretation shall much depend on the context. The domain of a map M is

defined (as its projection onto the first argument) by

D(M) = {x ∈ X : ∃y ∈ X : (x,y) ∈ M} = {x ∈ X : M(x) 6= /0}.

dom(M)=X, shall denote the full domain of M, and the range of M is defined by

R(M) = {y ∈ X : ∃x ∈ X : (x,y) ∈ M}.

The inverse M−1 of M is {(y,x) : (x,y) ∈ M}. For a real number ρ and a mapping M, let

ρM = {(x,ρy) : (x,y) ∈ M}. If L and M are any mappings, we define

L+M = {(x,y+ z) : (x,y) ∈ L, (x, z) ∈ M}.

Definition 11.2.1. Let M : X → 2X be a multivalued mapping on X . The map M is said to

be:

(i) (r)− strongly monotone if there exists a positive constant r such that

〈u∗−v∗,u−v〉 ≥ r‖u−v‖2∀(u,u∗), (v,v∗) ∈ graph(M).

(ii) (m)−relaxed monotone if there exists a positive constant m such that

〈u∗−v∗,u−v〉 ≥ (−m)‖u−v‖2∀(u,u∗), (v,v∗) ∈ graph(M).
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Definition 11.2.2. ([16]). Let A : X → X be a single-valued mapping. The map M : X → 2X

is said to be A− maximal monotone if

(i) M is (m)−relaxed monotone for m > 0,

(ii) R(A+ρM) = X for ρ > 0.

Example 11.2.1. Let A : X → X be an (r)−strongly monotone mapping on X for r > 0.

Let f : X → R be a locally Lipschitz functional such that ∂ f , the subdifferential of f , is

(m)−relaxed monotone, where m > 0. Then A + ∂ f is (r − m)−strongly monotone for

r − m > 0. Then it follows that A + ∂ f is pseudomonotone, which is, in fact, maximal

monotone. This is equivalent to stating that ∂ f is A−maximal monotone.

Definition 11.2.3. ([16]). Let A : X → X be an (r)−strongly monotone mapping and let

M : X → 2X be an A−maximal monotone mapping. Then the generalized resolvent operator

JM
ρ,A : X → X is defined by

JM
ρ,A(u) = (A+ρM)−1(u).

Definition 11.2.4. ([5]). Let H : X → X be a single-valued mapping. The map M : X → 2X

is said to be to H− maximal monotone if

(i) M is monotone,

(ii) R(H +ρM) = X for ρ > 0.

Definition 11.2.5. ([4]). Let H : X → X be an (r)−strongly monotone mapping and let

M : X → 2X be an H− monotone mapping. Then the generalized resolvent operator JM
ρ,H :

X → X is defined by

JM
ρ,H(u) = (H +ρM)−1(u).

Proposition 11.2.1. ([18]). Let A : X → X be an (r)−strongly monotone mapping and let

M : X → 2X be an A− maximal monotone mapping. Then (A+ρM) is maximal monotone

for ρ > 0.

Proposition 11.2.2. ([18]) Let A : X → X be an (r)−strongly monotone mapping and let

M : X → 2X be an A−- maximal monotone mapping. Then the operator (A + ρM)−1 is

single-valued for r−ρm > 0.

Proposition 11.2.3. ([4]) Let H : X → X be an (r)−strongly monotone mapping and let

M : X → 2X be an H− maximal monotone mapping. Then (H +ρM) is maximal monotone

for ρ > 0.

Proposition 11.2.4. ([4]) Let H : X → X be an (r)−strongly monotone mapping and let

M : X → 2X be an H−- maximal monotone mapping. Then the operator (H + ρM)−1 is

single-valued.
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11.3. The Generalized Relaxed Proximal Point Algorithm

This section deals with an introduction of a generalized version of the relaxed proximal

point algorithm and its applications to approximation solvability of the inclusion problem

(11.1.1) based on the A-maximal monotonicity.

Lemma 11.3.1. ([18]) Let X be a real Hilbert space, let A : X → X be (r)−strongly mono-

tone, and let M : X → 2X be A− maximal monotone. Then the generalized resolvent opera-

tor associated with M and defined by

JM
ρ,A(u) = (A+ρM)−1(u)∀u ∈ X ,

is ( 1
r−ρm

)− Lipschitz continuous for r−ρm > 0.

Lemma 11.3.2. Let X be a real Hilbert space, let A : X → X be (r)−strongly monotone

and (s)−Lipschitz continuous, and let M : X → 2X be A− maximal monotone. Then the

generalized resolvent operator associated with M and defined by

JM
ρ,A(u) = (A+ρM)−1(u)∀u ∈ X

satisfies

‖JM
ρ,A(A(u))−JM

ρ,A(A(v))‖≤ 1

r−ρm
‖A(u)−A(v)‖, (11.3.1)

where r−ρm > 0.

Theorem 11.3.3. Let X be a real Hilbert space, let A : X → X be (r)−strongly monotone,

and let M : X → 2X be A− maximal monotone. Then the following statements are equiva-

lent:

(i) An element u ∈ X is a solution to (11.1.1).

(ii) For an u ∈ X , we have

u = JM
ρ,A(A(u)),

where

JM
ρ,A(u) = (A+ρM)−1(u).

Theorem 11.3.4. Let X be a real Hilbert space, let H : X → X be (r)−strongly mono-

tone, and let M : X → 2X be H− maximal monotone. Then the following statements are

equivalent:

(i) An element u ∈ X is a solution to (11.1.1).

(ii) For an u ∈ X , we have

u = JM
ρ,H(H(u)),
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where

JM
ρ,H(u) = (H +ρM)−1(u).

Lemma 11.3.5. Let X be a real Hilbert space, let A : X → X be (r)−strongly monotone

and (s)− Lipschitz continuous, and let M : X → 2X be A- maximal monotone. Then

〈(JM
ρ,AoA)(u)− (JM

ρ,AoA)(v),A(u)−A(v)〉≤ 1

r−ρm
‖A(u)−A(v)‖2∀u,v ∈ X ,

where r−ρm > 0.

Lemma 11.3.6. Let X be a real Hilbert space, let H : X → X be (r)−strongly monotone

and (s)− Lipschitz continuous, and let M : X → 2X be H- maximal monotone. Then

〈(JM
ρ,HoH)(u)− (JM

ρ,HoH)(v),H(u)−H(v)〉 ≤ 1

r
‖H(u)−H(v)‖2∀u,v ∈ X .

In the following theorem, we apply the generalized relaxed proximal point algorithm to

approximate the solution of (11.1.1), and as a result, we succeed achieving linear conver-

gence.

Theorem 11.3.7. Let X be a real Hilbert space, let A : X → X be (r)−strongly mono-

tone and (s)−Lipschitz continuous, and let M : X → 2X be A− maximal monotone. For

an arbitrarily chosen initial point x0, suppose that the sequence {xk} is generated by the

generalized proximal point algorithm

A(xk+1) = (1−αk)A(xk)+αkyk ∀ k ≥ 0, (11.3.2)

and yk satisfies

‖yk −A(JM
ρk,A

(A(xk)))‖≤ δk‖yk −A(xk)‖,

where JM
ρk ,A

= (A+ρkM)−1, and

{δk},{αk},{ρk} ⊆ [0,∞)

are scalar sequences such that for γ ∈ (0, 1
2
), αk ≤ γ,

r−ρkm ≥ 1+
2γ2(s2−1)

1−2γ+
√

(1−2γ)2 −4γ4(s2 −1)
, (11.3.3)

1 < s ≤
√

1+
(1−2γ

2γ2

)2

, (11.3.4)

∑∞
k=0 δk < ∞, δk → 0, and α = lim supk→∞ αk, and ρ = lim supk→∞ ρk.
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Then the sequence {xk} converges linearly to a solution x∗ of (11.1.1) with the conver-
gence rate

θk =

√
(1−αk)2 +2αk(1−αk)

1

(r−ρkm)
+α2

k

s2

(r−ρkm)2

=
1

r−ρkm

√(
s2 +(r−ρkm)2 −2(r−ρkm)

)
α2

k −2
(

1− (r−ρkm)
)

αk +1

=
1

r−ρkm

√
Pk(αk) ∈ (0,1),

where

Pk(αk) =
(

s2 +(r−ρkm)2−2(r−ρkm)
)

α2
k −2

(
1− (r−ρkm)

)
αk +1

=
(

1−αk(r−ρkm−1)
)2

+α2
k(s2−1).

Proof. Note that it follows from hypotheses (11.3.2) and (11.3.3) that θk ∈ (0,1). Suppose

that x∗ is a zero of M. Then from Theorem 11.3.1, it follows that any solution to (11.1.1) is

a fixed point of JM
ρk ,A

oA. For all k ≥ 0, we express

A(zk+1) = (1−αk)A(xk)+αkA(JM
ρk ,A

(A(xk))).

Next, applying Lemma 11.3.2, we find the estimate

‖A(zk+1)−A(x∗)‖2 = ‖(1−αk)A(xk)+αkA(JM
ρk,A

(A(xk)))

− [(1−αk)A(x∗)+αkA(JM
ρk ,A

(A(x∗)))]‖2

= ‖(1−αk)(A(xk)−A(x∗))+αk(A(JM
ρk ,A

(A(xk)))−A(JM
ρk ,A

(A(x∗))))‖2

= (1−αk)
2‖A(xk)−A(x∗)‖2

+ 2αk(1−αk)〈A(xk)−A(x∗),A(JM
ρk ,A

(A(xk)))−A(JM
ρk ,A

(A(x∗)))〉
+ α2

k‖A(JM
ρk ,A

(A(xk)))−A(JM
ρk ,A

(A(x∗)))‖2

≤ (1−αk)
2‖A(xk)−A(x∗)‖2 +2αk(1−αk)

1

(r−ρkm)
‖A(xk)−A(x∗)‖2

+ α2
ks2‖JM

ρk ,A
(A(xk))− JM

ρk,A
(A(x∗))‖2

≤ (1−αk)
2‖A(xk)−A(x∗)‖2 +2αk(1−αk)

1

(r−ρkm)
‖A(xk)−A(x∗)‖2

+ α2
k

s2

(r−ρkm)2
‖A(xk)A(x∗)‖2

=
[
(1−αk)

2 +2αk(1−αk)
1

(r−ρkm)
+α2

k

s2

(r−ρkm)2

]
‖A(xk)−A(x∗)‖2

=
1

(r−ρkm)2

[(
s2 +(r−ρkm)2 −2(r−ρkm)

)
α2

k −2
(

1− (r−ρkm)
)

αk +1
]

· ‖A(xk)−A(x∗)‖2

= θ2
k‖A(xk)−A(x∗)‖2,
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where

θ2
k =

Pk(αk)

(r−ρkm)2
.

Thus, we have

‖A(zk+1)−A(x∗‖ ≤ θk‖A(xk)−A(x∗)‖

=
1

r−ρkm

√
Pk(αk)‖A(xk)−A(x∗)‖. (11.3.5)

Since A(xk+1) = (1−αk)A(xk)+αkyk, we have A(xk+1)−A(xk) = αk(yk −A(xk)).

It follows that

‖A(xk+1)−A(zk+1)‖
= ‖(1−αk)A(xk)+αkyk − [(1−αk)A(xk)+αkA(JM

ρk,A
(A(xk)))]‖

= ‖αk(yk −A(JM
ρ,A(A(xk))))‖

≤ αkδk‖yk −A(xk)‖.

Next, we estimate using the above arguments that

‖A(xk+1)−A(x∗)‖
≤ ‖A(zk+1)−A(x∗)‖+‖A(xk+1)−A(zk+1)‖
≤ ‖A(zk+1)−A(x∗)‖+αkδk‖yk −A(xk)‖
= ‖A(zk+1)−A(x∗)‖+δk‖A(xk+1)−A(xk)‖
≤ ‖A(zk+1)−A(x∗)‖+δk‖A(xk+1)−A(x∗)‖+δk‖A(xk)−A(x∗)‖. (11.3.6)

This implies from (11.3.6) on applying (11.3.5) that

(1−δk)‖A(xk+1)−A(x∗)‖
≤ ‖A(zk+1)−A(x∗)‖+δk‖A(xk)−A(x∗)‖
≤ θk‖A(xk)−A(x∗)‖+δk‖A(xk)−A(x∗)‖
=

(
θk +δk

)
‖A(xk)−A(x∗)‖. (11.3.7)

Therefore,

‖A(xk+1)−A(x∗)‖ ≤ (θk +δk)

1−δk

‖A(xk)−A(x∗)‖, (11.3.8)

where

lim sup
(θk +δk)

1−δk

= lim sup θk

=
1

(r−ρkm)

√
Pk(αk). (11.3.9)

Pk is a quadratic polynomial for each k whose leading coefficient

(
s2 +(r−ρkm)2 −2(r−ρkm)

)
=
(

1− (r−ρkm)
)2

+ s2 −1
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is positive since s > 1. Hence, each Pk has a minimum which is given by

(
s2 +(r−ρkm)2−2(r−ρkm)

)
−
(

1− (r−ρkm)
)2

(
s2 +(r−ρkm)2 −2(r−ρkm)

)

= 1−

(
1− (r−ρkm)

)2

(
1− (r−ρkm)

)2

+ s2 −1

< 1.

Now, it follows from (11.3.8) in light of (11.3.9) that the sequence {A(xk)} converges to

A(x∗). On the other hand, A is (r)−strongly monotone (and hence, ‖A(x)−A(y)‖≥ r‖x−
y‖), we have that

‖xk −x∗‖ ≤ θk

r
‖A(xk)−A(x∗)‖→ 0, (11.3.10)

which completes the proof.

Corollary 11.3.8. Let X be a real Hilbert space, let H : X → X be (r)−strongly mono-

tone and (s)−Lipschitz continuous, and let M : X → 2X be H− maximal monotone. For

an arbitrarily chosen initial point x0, suppose that the sequence {xk} is generated by the

generalized proximal point algorithm

H(xk+1) = (1−αk)H(xk)+αkyk ∀ k ≥ 0, (11.3.11)

and yk satisfies

‖yk −H(JM
ρk,H

(H(xk)))‖ ≤ δk‖yk −H(xk)‖,

where JM
ρk,H

= (H +ρkM)−1, and

{δk},{αk},{ρk} ⊆ [0,∞)

are scalar sequences such that for γ ∈ (0, 1
2), αk ≤ γ,

r ≥ 1+
2γ2(s2−1)

1−2γ +
√

(1−2γ)2 −4γ4(s2−1)
,

1 < s ≤
√

1+
(1−2γ

2γ2

)2

.

Then the sequence {xk} converges linearly to a solution of (11.1.1) with convergence

rate

θk =
1

r

√
(s2 + r2 −2r)α2

k −2(1− r)αk +1,

where ∑∞
k=0 δk < ∞, δk → 0, and α = lim supk→∞ αk, and ρ = lim supk→∞ ρk.
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11.4. An Application

Let X be a real Hilbert space and let f : X → R be a locally Lipschitz functional on X. We

consider the inclusion problem: determine a solution to

0 ∈ ∂ f (x), (11.4.1)

where ∂ f : X → 2X is a set-valued mapping on X . Then it turns out that A + ∂ f is

(r−m)−strongly monotone for r −m > 0, if A : X → X is (r)−strongly monotone, and

∂ f : X → 2X is (m)−relaxed monotone. This is equivalent to stating that ∂ f is A−maximal

monotone. Now all the conditions for Theorem 11. 3.3 are satisfied, one can apply

Theorem 11.3.3 to the solvability of (11.4.1) in the form:

Theorem 11.4.1. Let X be a real Hilbert space, and let A : X →X be (r)−strongly monotone

and (s)−Lipschitz continuous. Let f : X → R be a locally Lipschitz functional on X, and let

∂ f : X → 2X be A− maximal monotone. For an arbitrarily chosen initial point x0, suppose

that the sequence {xk} is generated by the generalized proximal point algorithm

A(xk+1) = (1−αk)A(xk)+αkyk∀ k ≥ 0, (11.4.2)

and yk satisfies

‖yk −A(J
∂ f
ρk,A

(A(xk)))‖≤ δk‖yk −A(xk)‖,

where J
∂ f
ρk,A

= (A+ρk∂ f )−1, and

{δk},{αk},{ρk} ⊆ [0,∞)

are scalar sequences such that for γ ∈ (0, 1
2
), αk ≤ γ,

r−ρkm ≥ 1+
2γ2(s2−1)

1−2γ+
√

(1−2γ)2 −4γ4(s2 −1)
,

1 < s ≤
√

1+
(1−2γ

2γ2

)2

.

Then the sequence {xk} converges linearly to a solution of (11.4.1) with convergence rate

given in Theorem 11.3.3.





References

[1] Agarwal, R.P., Verma,R.U., General system of (A,η)−maximal relaxed monotone

variational inclusion problems based on generalized hybrid algorithms, Communica-

tions in Nonlinear Science and Numerical Simulations 15 (2010), 238–251.

[2] Argyros, I.K., Cho, Y.J., Hilout, S., Numerical Methods for Equations and its Appli-

cations, CRC Press, Taylor & Francis, New York, 2012.

[21] Dhage, B.C., Verma, R.U., Second order boundary value problems of discontinuous

differential inclusions, Communications on Applied Nonlinear Analysis 12(3) (2005),

37-44.

[3] Eckstein, J., Bertsekas, D.P., On the Douglas-Rachford splitting method and the proxi-

mal point algorithm for maximal monotone operators, Mathematical Programming 55

(1992), 293–318.

[4] Fang, Y.P., Huang, N.J., H− monotone operators and system of variational inclusions,

Communications on Applied Nonlinear Analysis 11(1) (2004), 93–101.

[5] Fang, Y.P., Huang, N.J., Thompson, H.B., A new system of variational inclusions with

(H,η)− monotone operators, Computers and Mathematics with Applications 49(2-3)

(2005), 365–374.

[6] Fukushima, M., The primal Douglas-Rachford splitting algorithm for a class of mono-

tone operators with applications to the traffic equilibrium problem, Mathematical Pro-

gramming 72(1996), 1–15.

[7] Glowinski, R., Le Tellec, P., Augmented Lagrangians and Operator-Splitting Methods

in Continuum Mechanics, SIAM, Philadelphia, PA, 1989.

[8 Lan, H.Y., Kim, J.H., Cho, Y.J., On a new class of nonlinear A−monotone multivalued

variational inclusions, Journal of Mathematical Analysis and Applications 327(1)

(2007), 481–493.

[9] Moudafi, A., Mixed equilibrium problems: Sensitivity analysis and algorithmic as-

pect,Computers and Mathematics with Applications 44 (2002), 1099-1108.

[10] Robinson,S.M., Composition duality and maximal monotonicity, Mathematical Pro-

gramming 85 (1999a), 1-13.



218 Ioannis K. Argyros and Á. Alberto Magreñán
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Chapter 12

Newton-Type Iterative Methods for

Nonlinear Ill-Posed

Hammerstein-Type Equations

12.1. Introduction

This chapter is devoted to the study of non-linear ill-posed Hammerstein type operator

equations. Recall that ([13, 14, 15, 16]) an equation of the form

(KF)x = y (12.1.1)

is called a non-linear ill-posed Hammerstein type operator equation. Here F : D(F)⊆ X →
Z, is a nonlinear operator, K : Z → Y is a bounded linear operator and X ,Z,Y are Hilbert

spaces with corresponding inner product 〈., .〉X, 〈., .〉Z, 〈., .〉Y , and norm ‖.‖X, ‖.‖Z, ‖.‖Y

respectively. A typical example of a Hammerstein type operator is the nonlinear integral

operator

(Ax)(t) :=
Z 1

0
k(s, t) f (s,x(s))ds

where k(s, t) ∈ L2([0,1]× [0,1]), x ∈ L2[0,1] and t ∈ [0,1].

The above integral operator A admits a representation of the form A = KF where K :

L2[0,1]→ L2[0,1] is a linear integral operator with kernel k(t, s) : defined as

Kx(t) =
Z 1

0
k(t, s)x(s)ds

and F : D(F) ⊆ L2[0,1]→ L2[0,1] is a nonlinear superposition operator (cf. [24]) defined

as

Fx(s) = f (s,x(s)). (12.1.2)

The first author and his collaborators ([13, 14, 15, 16]), studied ill-posed Hammerstein type

equation extensively under some assumptions on the Fréchet derivative of F. Precisely, in

[13, 15], it is assumed that F ′(x0)
−1 exists and in [16] it is assumed that F ′(x)−1 exists for

all x in a ball of radius r around x0.
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Note that if the function f in (12.1.2) is differentiable with respect to the second variable

and for all x ∈ Br(x0), t ∈ [0,1]; ∂2 f (t,x(t)) ≥ κ1, then F ′(u)−1 exists and is a bounded

operator for all u ∈ Br(x0) (see Remark 2.1 in [15]), here ∂2 f (t, s) represents the partial

derivative of f with respect to the second variable.

Throughout this chapter it is assumed that the available data is yδ with

‖y−yδ‖Y ≤ δ

and hence one has to consider the equation

(KF)x = yδ (12.1.3)

instead of (12.1.1). Observe that the solution x of (12.1.3) can be obtained by solving

Kz = yδ (12.1.4)

for z and then solving the non-linear problem

F(x) = z. (12.1.5)

In [16], for solving (12.1.5), George and Kunhanandan considered the sequence defined

iteratively by

xδ
n+1,α = xδ

n,α −F ′(xδ
n,α)−1(F(xδ

n,α)− zδ
α)

where xδ
0,α := x0,

zδ
α = (K∗K +αI)−1K∗(yδ −KF(x0))+F(x0) (12.1.6)

and obtained local quadratic convergence.

Recall that a sequence (xn) in X with limxn = x∗ is said to be convergent of order p > 1,

if there exist positive reals c1,c2, such that for all n ∈ N

‖xn −x∗‖X ≤ c1e−c2pn

.

If the sequence (xn) has the property that ‖xn −x∗‖X ≤ c1qn, 0 < q < 1, then (xn) is said to

be linearly convergent. For an extensive discussion of convergence rate see Kelley [23].

And in [15], George and Nair studied the modified Laverentiev regularization

zδ
α = (K +αI)−1(yδ −KF(x0))

for obtaining an approximate solution of (12.1.4) and introduced modified Newton’s itera-

tions,

xδ
n,α = xδ

n−1,α −F ′(x0)
−1(F(xδ

n−1,α)−F(x0)− zδ
α)

for solving (12.1.5) and obtained local linear convergence. In fact in [15] and [16], a solu-

tion x̂ of (12.1.1) is called an x0-minimum norm solution if it satisfies

‖F(x̂)−F(x0)‖Z := min{‖F(x)−F(x0)‖Z : KF(x) = y,x ∈ D(F)}. (12.1.7)

We also assume throughout that the solution x̂ satisfies (12.1.7). In all these papers ([13, 14,

15, 16]), it is assumed that the ill-posedness of (12.1.1) is due to the nonclosedness of the

operator K. In this chapter we consider two cases:
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Case (1) F ′(x0)
−1 exists and is a bounded operator, i.e., (12.1.5) is regular.

Case (2) F is monotone ([26], [31]), Z = X is a real Hilbert space and F ′(x0)
−1 does

not exist, i.e., (12.1.5) is also ill-posed.

The case when F is not monotone and F ′(x0)
−1 does not exist is the subject matter of

the forthcoming chapter.

One of the advantages of (approximately) solving (12.1.4) and (12.1.5) to obtain an

approximate solution for (12.1.3) is that, one can use any regularization method ([8, 22])

for linear ill-posed equations, for solving (12.1.4) and any iterative method ([10, 12]) for

solving (12.1.5). In fact in this chapter we consider Tikhonov regularization([11, 13, 16,

19, 20]) for approximately solving (12.1.4) and we consider a modified two step Newton

method ([1, 6, 7, 9, 21, 25]) for solving (12.1.5). Note that the regularization parameter α
is chosen according to the adaptive method considered by Pereverzev and Schock in ([28])

for the linear ill-posed operator equations and the same parameter α is used for solving the

non-linear operator equation (12.1.5), so the choice of the regularization parameter is not

depending on the non-linear operator F , this is another advantage over treating (12.1.3) as

a single non-linear operator equation.

This chapter is organized as follows. Preparatory results are given in Section 12.2 and

Section 12.3 comprises the proposed iterative method for case (1) and case (2). Section

12.4 deals with the algorithm for implementing the proposed method. Numerical examples

are given in Section 12.5. Finally the chapter ends with a conclusion in section 12.6.

12.2. Preparatory Results

In this section we consider Tikhonov regularized solution zδ
α defined in (12.1.6) and obtain

an a priori and an a posteriori error estimate for ‖F(x̂)− zδ
α‖Z. The following assumption is

required to obtain the error estimate .

Assumption 12.2.1. There exists a continuous, strictly monotonically increasing function

ϕ : (0,a]→ (0,∞) with a ≥ ‖K∗K‖Y→X satisfying;

• limλ→0 ϕ(λ) = 0

•
sup
λ≥0

αϕ(λ)

λ +α
≤ ϕ(α), ∀λ ∈ (0,a]

and

• there exists v ∈ X ,‖v‖X ≤ 1 such that

F(x̂)−F(x0) = ϕ(K∗K)v.

Theorem 12.2.2. (see (4.3) in [16] ) Let zδ
α be as in (12.1.6) and Assumption 12.2.1 holds.

Then

‖F(x̂)− zδ
α‖Z ≤ ϕ(α)+

δ√
α

. (12.2.1)
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12.2.1. A Priori Choice of the Parameter

Note that the estimate ϕ(α) + δ√
α in (12.2.1) is of optimal order for the choice α := αδ

which satisfies ϕ(αδ) = δ√
αδ

. Let ψ(λ) := λ
√

ϕ−1(λ),0 < λ ≤ ‖K‖2
Y . Then we have δ =√

αδϕ(αδ) = ψ(ϕ(αδ)) and

αδ = ϕ−1(ψ−1(δ)).

So the relation (12.2.1) leads to ‖F(x̂)− zδ
α‖Z ≤ 2ψ−1(δ).

12.2.2. An Adaptive Choice of the Parameter

In this chapter, we propose to choose the parameter α according to the adaptive choice

established by Pereverzev and Shock [28] for solving ill-posed problems. We denote by

DM the set of possible values of the parameter α

DM = {αi = α0µ2i, i = 0,1,2, ....,M},µ > 1.

Then the selection of numerical value k for the parameter α according to the adaptive choice

is performed using the rule

k := max{i : αi ∈ D+
M} (12.2.2)

where D+
M = {αi ∈ DM : ‖zδ

αi
− zδ

α j
‖Z ≤ 4δ√

α j
, j = 0,1,2, ...., i−1}. Let

l := max{i : ϕ(αi) ≤
δ√
αi

}. (12.2.3)

We will be using the following theorem from [16] for our error analysis.

Theorem 12.2.3. (cf. [16], Theorem 4.3) Let l be as in (12.2.3), k be as in (12.2.2) and zδ
αk

be as in (12.1.6) with α = αk. Then l ≤ k and

‖F(x̂)− zδ
αk
‖Z ≤ (2+

4µ

µ−1
)µψ−1(δ).

12.3. Convergence Analysis

Throughout this chapter we assume that the operator F possess a uniformly bounded

Fréchet derivative F ′(.) for all x ∈ D(F). In the earlier papers [16, 17, 18] the authors

used the following Assumption:

Assumption 12.3.1. (cf.[30], Assumption 3 (A3)) There exist a constant K0 ≥ 0 such that

for every x,u ∈ Br(x0)∪Br(x̂)⊆ D(F) and v ∈ X there exists an element Φ(x,u,v)∈ X such

that [F ′(x)−F ′(u)]v = F ′(u)Φ(x,u,v),‖Φ(x,u,v)‖X ≤ K0‖v‖X‖x−u‖X .

The hypotheses of Assumption 12.3.1 may not hold or may be very expensive or impos-

sible to verify in general. In particular, as it is the case for well-posed nonlinear equations

the computation of the Lipschitz constant K0 even if this constant exists is very difficult.

Moreover, there are classes of operators for which Assumption 12.3.1 is not satisfied but

the iterative method converges.

In the present chapter, we expand the applicability of the Newton-type iterative method

under less computational cost. We achieve this goal by the following weaker Assumption.
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Assumption 12.3.2. Let x0 ∈ X be fixed. There exists a constant k0 such that for every

u ∈ Br(x0) ⊆ D(F) and v ∈ X , there exists an element Φ0(x0,u,v)∈ X satisfying

[F ′(x0)−F ′(u)]v = F ′(x0)Φ0(x0,u,v),‖Φ(x0,u,v)‖X ≤ k0‖v‖X‖x0 −u‖X .

Note that

k0 ≤ K0

holds in general and K0

k0
can be arbitrary large. The advantages of the new approach are:

(1) Assumption 12.3.2 is weaker than Assumption 12.3.1. Notice that there are classes

of operators that satisfy Assumption 12.3.2 but do not satisfy Assumption 12.3.1;

(2) The computational cost of finding the constant k0 is less than that of constant K0,

even when K0 = k0;

(3) The sufficient convergence criteria are weaker;

(4) The computable error bounds on the distances involved (including k0) are less costly

and more precise than the old ones (including K0);

(5) The information on the location of the solution is more precise;

and

(6) The convergence domain of the iterative method is larger.

These advantages are also very important in computational mathematics since they pro-

vide under less computational cost a wider choice of initial guesses for iterative method and

the computation of fewer iterates to achieve a desired error tolerance. Numerical examples

for (1)-(6) are presented in Section 4.

12.3.1. Iterative Method for Case (1)

In this subsection for an initial guess x0 ∈ X , we consider the sequence vδ
n,αk

defined itera-

tively by

vδ
n,αk

= vδ
n,αk

−F ′(x0)
−1(F(vδ

n,αk
)− zδ

αk
)

where vδ
0,αk

= x0 for obtaining an approximation xδ
αk

of x such that F(x) = zδ
αk

.
Let

yδ
n,αk

= vδ
2n−1,αk

(12.3.1)

and

xδ
n+1,αk

= vδ
2n,αk

, (12.3.2)

for n > 0. We will be using the following notations;

M ≥ ‖F ′(x0)‖X→Z;

β := ‖F ′(x0)
−1‖Z→X ;

k0 <
1

4
min{1,

1

β
};
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δ0 <

√
α0

4k0β
;

ρ :=
1

M
(

1

4k0β
− δ0√

α0

);

γρ := β[Mρ+
δ0√
α0

];

and

eδ
n,αk

:= ‖yδ
n,αk

−xδ
n,αk

‖X , ∀n ≥ 0. (12.3.3)

For convenience, we use the notation xn, yn and en for xδ
n,αk

, yδ
n,αk

and eδ
n,αk

respectively.

Further we define

q := k0r, r ∈ (r1, r2) (12.3.4)

where

r1 =
1−
√

1−4k0γρ

2k0

and

r2 = min{ 1

k0

,
1+
√

1−4k0γρ

2k0

}.

Note that r is well defined because γρ ≤ 1
4k0

. We will be using the relation e0 ≤ γρ for

proving our results, which can be seen as follows;

e0 = ‖y0 −x0‖X = ‖F ′(x0)
−1(F(x0)− zδ

αk
)‖X

≤ ‖F ′(x0)
−1‖Z→X‖(F(x0)− zδ

αk
)‖Z

≤ β‖F(x0)− zαk
+ zαk

− zδ
αk
‖Z

≤ β[‖F(x0)−F(x̂)‖Z +‖zαk
− zδ

αk
‖Z]

≤ β[Mρ+
δ√
α

]

≤ β[Mρ+
δ0√
α0

]

= γρ.

Theorem 12.3.3. Let en, q be as in (12.3.3), (12.3.4) respectively and xn,yn be as in

(12.3.2), (12.3.1) respectively with δ ∈ (0,δ0]. Then by Assumption 12.3.2 and Theorem

12.2.3 xn,yn ∈ Br(x0) and the following estimates hold for all n ≥ 0.

(a) ‖xn+1−yn‖X ≤ q‖yn −xn‖X ;

(b) ‖yn+1 −xn+1‖X ≤ q2‖yn −xn‖X ;

(c) en ≤ q2nγρ, ∀n ≥ 0.
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Proof. Suppose xn,yn ∈ Br(x0). Then

xn+1−yn = yn −xn −F ′(x0)
−1(F(yn)−F(xn))

= F ′(x0)
−1[F ′(x0)(yn −xn)− (F(yn)−F(xn))]

= F ′(x0)
−1

Z 1

0
[F ′(x0)−F ′(xn + t(yn −xn))](yn−xn)dt

and hence by Assumption 12.3.2, we have

‖xn+1−yn‖X ≤ k0r‖yn−xn‖X ≤ q‖yn−xn‖X .

This proves (a). To prove (b) we observe that

en+1 = ‖yn+1−xn+1‖X = ‖xn+1−yn −F ′(x0)
−1(F(xn+1)−F(yn))‖X

= ‖F ′(x0)
−1

Z 1

0
[F ′(x0)−F ′(yn + t(xn+1−yn)]

dt(xn+1−yn)‖X

≤ k0r‖yn−xn+1‖X

≤ q2‖xn −yn‖X .

The last but one step follows from Assumption 12.3.2 and the last step follows from (a).

This completes the proof of (b) and (c) follows from (b). Now we shall show that xn,yn ∈
Br(x0) by induction. For n = 1,

x1 −y0 = y0 −x0 −F ′(x0)
−1(F(y0)−F(x0))

= F ′(x0)
−1[F ′(x0)(y0 −x0)− (F(y0)−F(x0))]

= F ′(x0)
−1

Z 1

0
[F ′(x0)−F ′(x0 + t(y0 −x0))](y0−x0)dt

and hence by Assumption 12.3.2, we have

‖x1 −y0‖X ≤ k0

2
‖y0−x0‖2

X

≤ k0re0. (12.3.5)

So by triangle inequality and (12.3.5)

‖x1 −x0‖X ≤ ‖x1 −y0‖X +‖y0 −x0‖X

≤ (1+q)e0

≤ e0

1−q

≤
γρ

1−q

≤ r.

i.e., x1 ∈ Br(x0). Observe that

‖y1 −x1‖X = ‖x1 −y0 −F ′(x0)
−1(F(x1)−F(y0))‖X

≤ k0r‖x1 −y0‖X
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and hence by (12.3.5)

‖y1 −x1‖X ≤ q2e0. (12.3.6)

Therefore by (12.3.4), (12.3.6) and triangle inequality,

‖y1 −x0‖X ≤ ‖y1 −x1‖X +‖x1 −x0‖X

≤ (1+q+q2)e0

≤ e0

1−q

≤
γρ

1−q

≤ r

i.e., y1 ∈ Br(x0). Suppose xm,ym ∈ Br(x0). Then

‖xm+1−x0‖X ≤ ‖xm+1 −xm‖X +‖xm −xm−1‖X + · · ·+‖x1 −x0‖X

≤ (q+1)em +(q+1)em−1 + · · ·+(q+1)e0

≤ (q+1)(em +em−1 + · · ·+e0)

≤ (q+1)(q2m +q2(m−1) + · · ·+1)e0

≤ (q+1)
1− (q2m+1)

1−q2
e0

≤ e0

1−q

≤
γρ

1−q

≤ r

i.e., xm+1 ∈ Br(x0) and

‖ym+1 −x0‖X ≤ ‖ym+1 −xm+1‖X +‖xm+1 −x0‖X

≤ q2em +(q+1)em +(q+1)em−1 + · · ·+(q+1)e0

≤ (q2 +q+1)em +(q+1)em−1 + · · ·+(q+1)e0

≤ (q2(m+1)+ · · ·+q3 +q2 +q+1)e0

≤ e0

1−q

≤
γρ

1−q

≤ r

i.e., ym+1 ∈ Br(x0). Thus by induction xn,yn ∈ Br(x0). This completes the proof of the

Theorem.

The main result of this section is the following Theorem.
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Theorem 12.3.4. Let xn and yn be as in (12.3.2) and (12.3.1) respectively and assumptions

of Theorem 12.3.3 hold. Then (xn) is a Cauchy sequence in Br(x0) and converges to xδ
αk

∈
Br(x0). Further F(xδ

αk
) = zδ

αk
and

‖xn −xδ
αk
‖X ≤Cq2n

where C =
γρ

1−q

Proof. Using the relation (b) and (c) of Theorem 12.3.3, we obtain

‖xn+m −xn‖X ≤
i=m−1

∑
i=0

‖xn+i+1 −xn+i‖X

≤
i=m−1

∑
i=0

(1+q)en+i

≤
i=m−1

∑
i=0

(1+q)q2(n+i)e0

= (1+q)q2ne0 +(1+q)q2(n+1)e0 + .....+(1+q)q2(n+m)e0

≤ (1+q)q2n(1+q2 +q2(2) + · · ·+q2m)e0

≤ q2n[
1− (q2)m+1

1−q
]γρ

≤ Cq2n.

Thus xn is a Cauchy sequence in Br(x0) and hence it converges, say to xδ
αk
∈ Br(x0). Observe

that

‖F(xn)− zδ
αk
‖Z = ‖F ′(x0)(xn −yn)‖Z

≤ ‖F ′(x0)‖X→Z‖(xn −yn)‖Z

≤ Men ≤ Mq2nγρ. (12.3.7)

Now by letting n → ∞ in (12.3.7) we obtain F(xδ
αk

) = zδ
αk

. This completes the proof.

Hereafter we assume that

‖x̂−x0‖X < ρ ≤ r.

Theorem 12.3.5. Suppose that the hypothesis of Assumption 12.3.2 holds. Then

‖x̂−xδ
αk
‖X ≤ β

1−k0r
‖F(x̂)− zδ

αk
‖Z.

Proof. Note that k0r < 1 and by Assumption 12.3.2, we have

‖x̂−xδ
αk
‖X ≤ ‖x̂−xδ

αk
+F ′(x0)

−1[F(xδ
αk

)−F(x̂)+F(x̂)− zδ
αk

]‖X

≤ ‖F ′(x0)
−1[F ′(x0)(x̂−xδ

αk
)+F(xδ

αk
)−F(x̂)]‖X

+‖F ′(x0)
−1(F(x̂)− zδ

αk
)‖X

≤ k0‖x0 − x̂− t(xδ
αk
− x̂)‖X‖x̂−xδ

αk
‖X +β‖F(x̂)− zδ

αk
‖Z

≤ k0r‖x̂−xδ
αk
‖Z +β‖F(x̂)− zδ

αk
‖Z.
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This completes the proof. The following Theorem is a consequence of Theorem 12.3.4 and

Theorem 12.3.5.

Theorem 12.3.6. Let xn be as in (12.3.2), assumptions in Theorem 12.3.4 and Theorem

12.3.5 hold. Then

‖x̂−xn‖X ≤ Cq2n +
β

1−k0r
‖F(x̂)− zδ

αk
‖Z

where C is as in Theorem 12.3.4.

Observe that from section 2.2, l ≤ k and αδ ≤ αl+1 ≤ µαl, we have

δ√
αk

≤ δ√
αl

≤ µ
δ√
αδ

= µϕ(αδ) = µψ−1(δ).

This leads to the following theorem,

Theorem 12.3.7. Let xn be as in (12.3.2), assumptions in Theorem 12.2.3, Theorem 12.3.4

and Theorem 12.3.5 hold. Let

nk := min{n : q2n ≤ δ√
αk

}.

Then

‖x̂−xnk
‖X = O(ψ−1(δ)).

12.3.2. Iterative Method for Case (2)

F is a monotone operator (i.e., 〈F(x)−F(y),x− y〉 ≥ 0, ∀x,y ∈ D(F)), Z = X is a real

Hilbert space and F ′(x0)
−1 does not exist. Thus the ill-posedness of (12.1.1) in this case is

due to the ill-posedness of F as well as the nonclosedness of the range of the linear operator

K. The following assumptions are needed in addition to the earlier assumptions for our

convergence analysis.

Assumption 12.3.8. There exists a continuous, strictly monotonically increasing function

ϕ1 : (0,b]→ (0,∞) with b ≥ ‖F ′(x0)‖X→X satisfying;

• limλ→0 ϕ1(λ) = 0,

•
sup
λ≥0

αϕ1(λ)

λ +α
≤ ϕ1(α) ∀λ ∈ (0,b]

and

• there exists v ∈ X with ‖v‖X ≤ 1 (cf. [26]) such that

x0 − x̂ = ϕ1(F ′(x0))v.

Assumption 12.3.9. For each x ∈ Br̃(x0) there exists a bounded linear operator G(x,x0)

(see [29]) such that

F ′(x) = F ′(x0)G(x,x0)

with ‖G(x,x0)‖X→X ≤ k2.
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The iterative method for this case

ṽδ
n,αk

= ṽδ
n,αk

−R(x0)
−1[F(ṽδ

n,αk
)− zδ

αk
+

αk

c
(ṽδ

n,αk
−x0)]

where ṽδ
0,αk

:= x0 is the initial guess and R(x0) := F ′(x0)+ αk

c
I, with c ≤ αk. Let

ỹδ
n,αk

= ṽδ
2n−1,αk

(12.3.8)

and

x̃δ
n+1,αk

= ṽδ
2n,αk

(12.3.9)

for n > 0.

First we prove that x̃n,αk
converges to the zero xδ

c,αk
of

F(x)+
αk

c
(x−x0) = zδ

αk
(12.3.10)

and then we prove that xδ
c,αk

is an approximation for x̂.

Let

ẽδ
n,αk

:= ‖ỹδ
n,αk

− x̃δ
n,αk

‖X , ∀n ≥ 0. (12.3.11)

For the sake of simplicity, we use the notation x̃n, ỹn and ẽn for x̃δ
n,αk

, ỹδ
n,αk

and ẽδ
n,αk

respectively.

Hereafter we assume that ‖x̂−x0‖X < ρ ≤ r̃ where

ρ <
1

M
(1− δ0√

α0

)

with δ0 <
√

α0. Let

γ̃ρ := Mρ+
δ0√
α0

.

and we define

q1 = k0r̃, r̃ ∈ (r̃1, r̃2) (12.3.12)

where

r̃1 =
1−
√

1−4k0 γ̃ρ

2k0

and

r̃2 = min{ 1

k0

,
1+
√

1−4k0γ̃ρ

2k0

}.

Theorem 12.3.10. Let ẽn and q1 be as in equation (12.3.11) and (12.3.12) respectively, x̃n

and ỹn be as in (12.3.9) and (12.3.8) respectively with δ ∈ (0,δ0] and suppose Assumption

12.3.2 holds. Then we have the following.

(a) ‖x̃n − ỹn−1‖X ≤ q1‖ỹn−1− x̃n−1‖X ;

(b) ‖ỹn − x̃n‖X ≤ q2
1‖ỹn−1− x̃n−1‖X ,
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(c) ẽn ≤ q2n
1 γ̃ρ, ∀n ≥ 0.

Proof. Suppose x̃n, ỹn ∈ Br̃(x0), then

x̃n − ỹn−1 = ỹn−1 − x̃n−1 −R(x0)
−1(F(ỹn−1)−F(x̃n−1)

+
αk

c
(ỹn−1− x̃n−1))

= R(x0)
−1[R(x0)(ỹn−1− x̃n−1)

−(F(ỹn−1)−F(x̃n−1))−
αk

c
(ỹn−1− x̃n−1)]

= R(x0)
−1

Z 1

0
[F ′(x0)− (F(ỹn−1)−F(x̃n−1))]

×(ỹn−1 − x̃n−1)dt.

Now since ‖R(x0)
−1F ′(x0)‖X→X ≤ 1, the proof of (a) follows as in Theorem 12.3.3. Again

observe that

ẽn ≤ ‖x̃n− ỹn−1 −R(x0)
−1(F(x̃n)− zδ

αk
+

αk

c
(x̃n −x0))‖X

+‖R(x0)
−1(F(ỹn−1)− zδ

αk
+

αk

c
(ỹn−1−x0))‖X

≤ ‖R(x0)
−1[R(x0)(x̃n− ỹn−1)− (F(x̃n)−F(ỹn−1))−

αk

c
(x̃n − ỹn−1)]‖X

≤ ‖R(x0)
−1

Z 1

0
[F ′(x0)− (F(x̃n)−F(ỹn−1))]dt(x̃n− ỹn−1)‖X .

So the remaining part of the proof is analogous to the proof of Theorem 12.3.3.

Theorem 12.3.11. Let ỹn and x̃n be as in (12.3.8) and (12.3.9) respectively and assumptions

of Theorem 12.3.10 holds. Then (x̃n) is a Cauchy sequence in Br̃(x0) and converges to

xδ
c,αk

∈ Br̃(x0). Further F(xδ
c,αk

)+ αk

c
(xδ

c,αk
−x0) = zδ

αk
and

‖x̃n −xδ
c,αk

‖X ≤ C̃q2n
1

where C̃ =
γ̃ρ

1−q1
.

Proof. Analogous to the proof of Theorem 12.3.4, one can prove that x̃n is a Cauchy se-

quence in Br̃(x0) and hence it converges, say to xδ
c,αk

∈ Br̃(x0) and

‖F(x̃n)− zδ
αk

+
αk

c
(x̃n −x0)‖X = ‖R(x0)(x̃n − ỹn)‖X

≤ ‖R(x0)‖X→X‖(x̃n− ỹn)‖X

≤ (‖F ′(x0)‖X→X +
αk

c
)ẽn

≤ (‖F ′(x0)‖X→X +
αk

c
)q2n

1 ẽ0 (12.3.13)

≤ (‖F ′(x0)‖X→X +
αk

c
)q2n

1 γ̃ρ.
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Now by letting n →∞ in (12.3.13) we obtain F(xδ
c,αk

)+ αk

c
(xδ

c,αk
−x0) = zδ

αk
. This completes

the proof.

Assume that k2 < 1−k0r̃
1−c

and for the sake of simplicity assume that ϕ1(α) ≤ ϕ(α) for

α > 0.

Theorem 12.3.12. Suppose xδ
c,αk

is the solution of (12.3.10) and Assumptions 12.3.2, 12.3.8

and 12.3.9 hold. Then

‖x̂−xδ
c,αk

‖X = O(ψ−1(δ)).

Proof. Note that c(F(xδ
c,αk

)− zδ
αk

)+αk(xδ
c,αk

−x0) = 0, so

(F ′(x0)+αkI)(xδ
c,αk

− x̂) = (F ′(x0)+αkI)(xδ
c,αk

− x̂)

−c(F(xδ
c,αk

)− zδ
αk

)−αk(xδ
cα−x0)

= αk(x0 − x̂)+F ′(x0)(xδ
c,αk

− x̂)

−c[F(xδ
c,αk

)− zδ
αk

]

= αk(x0 − x̂)+F ′(x0)(xδ
c,αk

− x̂)

−c[F(xδ
c,αk

)−F(x̂)+F(x̂)− zδ
αk

]

= αk(x0 − x̂)−c(F(x̂)− zδ
αk

)+F ′(x0)(xδ
c,αk

− x̂)

−c[F(xδ
c,αk

)−F(x̂)].

Thus

‖xδ
c,αk

− x̂‖X ≤ ‖αk(F ′(x0 +αkI)−1(x0− x̂)‖X +‖(F ′(x0)+αkI)−1

c(F(x̂)− zδ
αk

)‖X +‖(F ′(x0)+αkI)−1[F ′(x0)(xδ
c,αk

− x̂)

−c(F(xδ
c,αk

)−F(x̂))]‖X

≤ ‖αk(F ′(x0)+αkI)−1(x0 − x̂)‖X +‖F(x̂)− zδ
αk
‖X

+‖(F ′(x0)+αkI)−1

Z 1

0
[F ′(x0)−cF ′(x̂+ t(xδ

c,αk
− x̂)]

(xδ
c,αk

− x̂)dt‖X

≤ ‖αk(F ′(x0)+αkI)−1(x0 − x̂)‖X

+‖F(x̂)− zδ
αk
‖X +Γ (12.3.14)

where Γ := ‖(F ′(x0)+ αkI)−1
R 1

0 [F ′(x0)− cF ′(x̂ + t(xδ
c,αk

− x̂)](xδ
c,αk

− x̂)dt‖X . So by As-

sumption 12.3.9, we obtain

Γ ≤ ‖(F ′(x0)+αkI)−1

Z 1

0
[F ′(x0)−F ′(x̂+ t(xδ

c,αk
− x̂)]

(xδ
c,αk

− x̂)dt‖X +(1−c)‖(F ′(x0)+αI)−1F ′(x0)
Z 1

0
G(x̂ + t(xδ

c,αk
− x̂),x0)(xδ

c,αk
− x̂)dt‖X

≤ k0r̃‖xδ
c,αk

− x̂‖X +(1−c)k2‖xδ
c,αk

− x̂‖X (12.3.15)
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and hence by (12.3.14) and (12.3.15) we have

‖xδ
c,αk

− x̂‖X ≤ ‖αk(F ′(x0)+αkI)−1(x0 − x̂)‖X +‖F(x̂)− zδ
αk
‖X

1− (1−c)k2 −k0r̃

≤
ϕ1(αk)+(2+ 4µ

µ−1 )µψ−1(δ)

1− (1−c)k2 −k0r̃

= O(ψ−1(δ)).

This completes the proof of the Theorem.

The following Theorem is a consequence of Theorem 12.3.11 and Theorem 12.3.12.

Theorem 12.3.13. Let x̃n be as in (12.3.9), assumptions in Theorem 12.3.11 and Theorem

12.3.12 hold. Then

‖x̂− x̃n‖X ≤ C̃q2n
1 +O(ψ−1(δ))

where C̃ is as in Theorem 12.3.11.

Theorem 12.3.14. Let x̃n be as in (12.3.9), assumptions in Theorem 12.2.3, Theorem

12.3.11 and Theorem 12.3.12 hold. Let

nk := min{n : q2n
1 ≤ δ√

αk

}.

Then

‖x̂− x̃nk
‖X = O(ψ−1(δ)).

Remark 12.3.15. Let us denote by r̄1, γ̄ρ, q̄, δ̄0 the parameters using K0 instead of k0 for

Case 1 (Similarly for Case 2). Then we have,

r1 ≤ r̄1,

δ̄0 ≤ δ0,

γ̄ρ ≤ γρ,

q ≤ q̄.

Moreover, strict inequality holds in the preceding estimates if k0 < K0. Let h0 = 4k0γρ

and h = 4K0γ̄ρ. We can certainly choose γρ sufficiently close to γ̄ρ. Then, we have that,

h≤ 1⇒ h0 ≤ 1 but not necessarily vice versa unless if k0 = K0 and γρ = γ̄ρ. Finally, we have

that, h0

h
→ 0 as k0

K0
→ 0. The last estimate shows by how many times our new approach using

k0 can expand the applicability of the old approach using K0 for these methods. Hence, all

the above justify the claims made at the introduction of the chapter. Finally we note that

the results obtained here are useful even if Assumptions 12.3.1 is satisfied but sufficient

convergence condition h ≤ 1 is not satisfied but h0 ≤ 1 is satisfied. Indeed, we can start

with iterative method described in Case 1 (or Case 2) until a finite step N such that h ≤ 1

is satisfied with xδ
N+1,αN

as a starting point for faster methods such as (12.1.6). Such an

approach has already been employed in [2], [4] and [5] where the modified Newton’s

method is used as a predictor for Newton’s method.
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12.4. Algorithm

Note that for i, j ∈ {0,1,2, · · · ,M}

zδ
αi
− zδ

α j
= (α j −αi)(K∗K +α jI)

−1(K∗K +αiI)
−1[K∗(yδ−KF(x0))].

The algorithm for implementing the iterative methods considered in section 3 involves

the following steps.

• α0 = δ2
;

• αi = µ2iα0,µ > 1;

• solve for wi : (K∗K +αiI)wi = K∗(yδ−KF(x0));

• solve for j < i, zi j : (K∗K +α jI)zi j = (α j −αi)wi;

• if ‖zi j‖X > 4
µ j , then take k = i−1;

• otherwise, repeat with i+1 in place of i.

• choose nk = min{n : q2n ≤ δ√
αk
} in case (1) and nk = min{n : q2n

1 ≤ δ√
αk
} in case (2)

• solve xnk
using the iteration (12.3.2) or x̃nk

using the iteration (12.3.9).

12.5. Numerical Examples

We present 5 numerical examples in this section. First, we consider two examples for illus-

trating the algorithm considered in the above sections. We apply the algorithm by choosing

a sequence of finite dimensional subspace (VN) of X with dimVN = N + 1. Precisely we

choose VN as the space of linear splines in a uniform grid of N +1 points in [0,1]. Then we

present two examples where Assumption 12.3.1 is not satisfied but Assumption 12.3.2 is

satisfied. In the last example we show that k0

K0
can be arbitrarily small.

Example 12.5.1. In this example for Case (1), we consider the operator KF : D(KF) ⊆
L2(0,1)−→ L2(0,1) with K : L2(0,1)−→ L2(0,1) defined by

K(x)(t) =

Z 1

0
k(t, s)x(s)ds

where k(t, s) =

{
(1− t)s,0 ≤ s ≤ t ≤ 1

(1− s)t,0 ≤ t ≤ s ≤ 1
and

F : D(F)⊆ L2(0,1)−→ L2(0,1)

defined by F(u) := u3,
Then the Fréchet derivative of F is given by F ′(u)w = 3(u)2w.

In our computation, we take y(t) = 837t
6160 − t2

16 − t11

110 − 3t5

80 − 3t8

112 and yδ = y+δ. Then the

exact solution

x̂(t) = 0.5+ t3.



236 Ioannis K. Argyros and Á. Alberto Magreñán

We use

x0(t) = 0.5+ t3 − 3

56
(t− t8)

as our initial guess.

We choose α0 = (1.3)2(δ)2, µ = 1.2, δ = 0.0667 the Lipschitz constant k0 equals ap-

proximately 0.23 and r = 1, so that q = k0r = 0.23. The iterations and corresponding error

estimates are given in Table 12.5.1. The last column of the Table 12.5.1 shows that the error

‖xnk
− x̂‖X is of order O(δ

1
2 ).

Table 12.5.1. Different errors

N k αk ‖xnk
− x̂‖X

‖xnk
−x̂‖X

(δ)1/2

16 4 0.0231 0.5376 2.0791

32 4 0.0230 0.5301 2.0523

64 4 0.0229 0.5257 2.0359

128 4 0.0229 0.5234 2.0270

256 4 0.0229 0.5222 2.0224

512 4 0.0229 0.5216 2.0200

1024 4 0.0229 0.5213 2.0188

Example 12.5.2. In this example for Case (2), we consider the operator KF : D(KF) ⊆
L2(0,1)−→ L2(0,1) where K : L2(0,1)−→ L2(0,1) defined by

K(x)(t) =

Z 1

0
k(t, s)x(s)ds

and F : D(F) ⊆ L2(0,1)−→ L2(0,1) defined by

F(u) :=

Z 1

0
k(t, s)u3(s)ds,

where

k(t, s) =

{
(1− t)s,0 ≤ s ≤ t ≤ 1

(1− s)t,0 ≤ t ≤ s ≤ 1
.

Then for all x(t),y(t) : x(t) > y(t) : (see section 4.3 in [30])

〈F(x)−F(y),x−y〉 =

Z 1

0

[
Z 1

0
k(t, s)(x3−y3)(s)ds

]
(x−y)(t)dt ≥ 0.

Thus the operator F is monotone. The Fréchet derivative of F is given by

F ′(u)w = 3

Z 1

0
k(t, s)(u(s))2w(s)ds.

So for any u ∈ Br(x0),x0(s)≥ k3 > 0,∀s ∈ (0,1), we have

F ′(u)w = F ′(x0)G(u,x0)w,
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where G(u,x0) = ( u
x0

)2.

In our computation, we take y(t) = 1
110

( t13

156
− t3

6
+ 25t

156
) and yδ = y + δ. Then the exact

solution

x̂(t) = t3.

We use

x0(t) = t3 +
3

56
(t− t8)

as our initial guess, so that the function x0 − x̂ satisfies the source condition

x0 − x̂ =
3

56
(t− t8) = F ′(x0)(

t6

x0(t)2
) = ϕ1(F ′(x0))(

t6

x0(t)2
)

where ϕ1(λ) = λ. Thus we expect to have an accuracy of order at least O(δ
1
2 ).

We choose α0 = (1.3)δ, δ = 0.0667 =: c the Lipschitz constant k0 equals approximately

0.21 as in [30] and r̃ = 1, so that q1 = k0r̃ = 0.21. The results of the computation are

presented in Table 12.5.2.

Table 12.5.2. Results of computation

N k αk ‖x̃nk
− x̂‖X

‖x̃nk
−x̂‖X

δ1/2

8 4 0.0494 0.1881 0.7200

16 4 0.0477 0.1432 0.5531

32 4 0.0473 0.1036 0.4010

64 4 0.0472 0.0726 0.2812

128 4 0.0471 0.0491 0.1900

256 4 0.0471 0.0306 0.1187

512 4 0.0471 0.0140 0.0543

1024 4 0.0471 0.0133 0.0515

In the next two cases, we present examples for nonlinear equations where Assumption

12.3.2 is satisfied but not Assumption 12.3.1.

Example 12.5.3. Let X = Y = R, D = [0,∞),x0 = 1 and define function F on D by

F(x) =
x1+ 1

i

1+ 1
i

+c1x+c2 , (12.5.1)

where c1,c2 are real parameters and i > 2 an integer. Then F ′(x) = x1/i + c1 is not Lips-

chitz on D. Hence, Assumption 12.3.1 is not satisfied. However central Lipschitz condition

Assumption 12.3.2 holds for k0 = 1.

Indeed, we have

‖F ′(x)−F ′(x0)‖X = |x1/i −x
1/i

0 |

=
|x−x0|

x
i−1

i

0 + · · ·+x
i−1

i
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so

‖F ′(x)−F ′(x0)‖X ≤ k0|x−x0|.

Example 12.5.4. We consider the integral equations

u(s) = f (s)+λ
Z b

a
G(s, t)u(t)1+1/ndt, n ∈ N. (12.5.2)

Here, f is a given continuous function satisfying f (s) > 0, s ∈ [a,b],λ is a real number, and

the kernel G is continuous and positive in [a,b]× [a,b].
For example, when G(s, t) is the Green kernel, the corresponding integral equation is

equivalent to the boundary value problem

u′′ = λu1+1/n

u(a) = f (a),u(b) = f (b).

These type of problems have been considered in [1]- [5].

Equation of the form (12.5.2) generalize equations of the form

u(s) =
Z b

a
G(s, t)u(t)ndt (12.5.3)

studied in [1]-[5]. Instead of (12.5.2) we can try to solve the equation F(u) = 0 where

F : Ω ⊆ C[a,b]→ C[a,b],Ω = {u ∈ C[a,b] : u(s)≥ 0, s ∈ [a,b]},

and

F(u)(s) = u(s)− f (s)−λ

Z b

a
G(s, t)u(t)1+1/ndt.

The norm we consider is the max-norm.

The derivative F ′ is given by

F ′(u)v(s) = v(s)−λ(1+
1

n
)

Z b

a
G(s, t)u(t)1/nv(t)dt, v ∈ Ω.

First of all, we notice that F ′ does not satisfy a Lipschitz-type condition in Ω. Let us con-

sider, for instance, [a,b] = [0,1],G(s,t)= 1 and y(t) = 0. Then F ′(y)v(s) = v(s) and

‖F ′(x)−F ′(y)‖C[a,b]→C[a,b] = |λ|(1+
1

n
)

Z b

a
x(t)1/ndt.

If F ′ were a Lipschitz function, then

‖F ′(x)−F ′(y)‖C[a,b]→C[a,b] ≤ L1‖x−y‖C[a,b],

or, equivalently, the inequality

Z 1

0
x(t)1/ndt ≤ L2 max

x∈[0,1]
x(s), (12.5.4)
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would hold for all x ∈ Ω and for a constant L2. But this is not true. Consider, for example,

the functions

x j(t) =
t

j
, j ≥ 1, t ∈ [0,1].

If these are substituted into (12.5.4)

1

j1/n(1+1/n)
≤ L2

j
⇔ j1−1/n ≤ L2(1+1/n), ∀ j ≥ 1.

This inequality is not true when j → ∞.

Therefore, condition (12.5.4) is not satisfied in this case. Hence Assumption 12.3.1 is

not satisfied. However, condition Assumption 12.3.2 holds. To show this, let x0(t) = f (t)
and γ = mins∈[a,b] f (s),α > 0 Then for v ∈ Ω,

‖[F ′(x)−F ′(x0)]v‖C[a,b] = |λ|(1+
1

n
) max

s∈[a,b]
|
Z b

a
G(s, t)(x(t)1/n− f (t)1/n)v(t)dt|

≤ |λ|(1+
1

n
) max

s∈[a,b]
Gn(s, t)

where Gn(s, t) = G(s,t)|x(t)− f (t)|
x(t)(n−1)/n+x(t)(n−2)/n f (t)1/n+···+ f (t)(n−1)/n ‖v‖C[a,b].

Hence,

‖[F ′(x)−F ′(x0)]v‖C[a,b] =
|λ|(1+1/n)

γ(n−1)/n
max

s∈[a,b]

Z b

a
G(s, t)dt‖x−x0‖C[a,b]

≤ k0‖x−x0‖C[a,b],

where k0 =
|λ|(1+1/n)

γ(n−1)/n N and N = maxs∈[a,b]

R b
a G(s, t)dt. Then Assumption 12.3.2 holds for

sufficiently small λ.

Example 12.5.5. Define the scalar function F by F(x) = d0x+d1 +d2 sined3x,x0 = 0, where

di, i = 0,1,2,3 are given parameters. Then, it can easily be seen that for d3 large and d2

sufficiently small, k0

K0
can be arbitrarily small.

12.6. Conclusion

We presented an iterative method which is a combination of modified Newton method and

Tikhonov regularization for obtaining an approximate solution for a nonlinear ill-posed

Hammerstein type operator equation KF(x) = y, with the available noisy data yδ in place of

the exact data y. In fact we considered two cases, in the first case it is assumed that F ′(x0)
−1

exists and in the second case it is assumed that F is monotone but F ′(x0)
−1 does not exist.

In both the cases, the derived error estimate using an a priori and balancing principle are of

optimal order with respect to the general source condition. The results of the computational

experiments gives the evidence of the reliability of our approach.





References

[1] Argyros, I. K., Convergence and Application of Newton-type Iterations, (Springer,

2008).

[2] Argyros, I. K., Approximating solutions of equations using Newton’s method with a

modified Newton’s method iterate as a starting point. Rev. Anal. Numer. Theor. Approx.

36 (2007), 123-138.

[3] Argyros, I. K., A Semilocal convergence for directional Newton methods, Math. Com-

put.(AMS). 80 (2011), 327-343.

[4] Argyros, I. K., Hilout, S. Weaker conditions for the convergence of Newton’s method,

J. Complexity, 28 (2012), 364-387.

[5] Argyros, I. K., Cho, Y. J., Hilout, S., Numerical methods for equations and its appli-

cations, (CRC Press, Taylor and Francis, New York, 2012).

[6] Argyros, I. K., Hilout, S., A convergence analysis for directional two-step Newton

methods, Numer. Algor., 55 (2010), 503-528.

[7] Bakushinskii, A. B., The problem of convergence of the iteratively regularized Gauss-

Newton method, Comput. Math. Math. Phys., 32 (1982), 1353-1359.

[8] Bakushinskii, A. B., Kokurin, M. Y., Iterative Methods for Approximate Solution of

Inverse Problems, (Springer, Dordrecht, 2004).

[9] Blaschke, B., Neubauer, A., Scherzer, O., On convergence rates for the iteratively

regularized Gauss-Newton method IMA J. Numer. Anal., 17 (1997), 421-436.

[10] Engl, H. W., Regularization methods for the stable solution of inverse problems, Sur-

veys on Mathematics for Industry, 3 (1993), 71-143.

[11] Engl, H. W., Kunisch, K., Neubauer, A., Convergence rates for Tikhonov regulariza-

tion of nonlinear ill-posed problems, Inverse Problems, 5 (1989), 523-540.

[12] Engl, H. W., Kunisch, K., Neubauer, A., Regularization of Inverse Problems, (Kluwer,

Dordrecht, 1996).

[13] George, S., Newton-Tikhonov regularization of ill-posed Hammerstein operator equa-

tion, J. Inverse and Ill-Posed Problems, 14(2) (2006), 135-146.



242 Ioannis K. Argyros and Á. Alberto Magreñán
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Chapter 13

Enlarging the Convergence Domain

of Secant-Like Methods for

Equations

13.1. Introduction

Let X , Y be Banach spaces and D be a non-empty, convex and open subset in X . Let

U(x, r) and U(x, r) stand, respectively, for the open and closed ball in X with center x and

radius r > 0. Denote by L(X ,Y ) the space of bounded linear operators from X into Y . In

the present chapter we are concerned with the problem of approximating a locally unique

solution x? of equation

F(x) = 0, (13.1.1)

where F is a Fréchet continuously differentiable operator defined on D with values in Y .

A lot of problems from computational sciences and other disciplines can be brought in

the form of equation (13.1.1) using Mathematical Modelling [8, 10, 14]. The solution of

these equations can rarely be found in closed form. That is why most solution methods for

these equations are iterative. In particular, the practice of numerical analysis for finding

such solutions is essentially connected to variants of Newton’s method [8, 10, 14, 23, 26,

28, 33].

A very important aspect in the study of iterative procedures is the convergence domain.

In general the convergence domain is small. This is why it is important to enlarge it without

additional hypotheses. Then, this is our goal in this chapter.

In the present chapter we study the secant-like method defined by

x−1, x0 are initial points

yn = λxn +(1−λ)xn−1, λ ∈ [0,1]

xn+1 = xn −B−1
n F(xn), Bn = [yn,xn;F] for each n = 0,1,2, · · · .

(13.1.2)

The family of secant-like methods reduces to the secant method if λ = 0 and to Newton’s

method if λ = 1. It was shown in [28] (see also [7, 8, 20, 22] and the references therein)

that the R–order of convergence is at least (1 +
√

5)/2 if λ ∈ [0,1), the same as that of the

secant method. In the real case the closer xn and yn are, the higher the speed of convergence.
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Moreover in [19], it was shown that as λ approaches 1 the speed of convergence is close

to that of Newton’s method. Moreover, the advantages of using secant-like method instead

of Newton’s method is that the former method avoids the computation of F ′(xn)
−1 at each

step. The study about convergence matter of iterative procedures is usually centered on

two types: semilocal and local convergence analysis. The semilocal convergence matter is,

based on the information around an initial point, to give criteria ensuring the convergence

of iterative procedure; while the local one is, based on the information around a solution,

to find estimates of the radii of convergence balls. There is a plethora of studies on the

weakness and/or extension of the hypothesis made on the underlying operators; see for

example [1]–[35] or even graphical tools to study this method [25].

The hypotheses used for the semilocal convergence of secant-like method are (see [8,

18, 19, 22]):

(C1) There exists a divided difference of order one denoted by [x,y;F] ∈ L(X ,Y ) satisfy-

ing

[x,y;F](x−y) = F(x)−F(y) for all x,y ∈ D;

(C2) There exist x−1, x0 in D and c > 0 such that

‖ x0 −x−1 ‖≤ c;

(C3) There exist x−1,x0 ∈ D and M > 0 such that A−1
0 ∈ L(Y ,X ) and

‖ A−1
0 ([x,y;F]− [u,v;F]) ‖≤ M (‖ x−u ‖ + ‖ y−v ‖) for all x,y,u,v ∈ D;

(C ?
3 ) There exist x−1,x0 ∈ D and L > 0 such that A−1

0 ∈ L(Y ,X ) and

‖ A−1
0 ([x,y;F]− [v,y;F]) ‖≤ L ‖ x−v ‖ for all x,y,v ∈ D;

(C ??
3 ) There exist x−1,x0 ∈ D and K > 0 such that F(x0)

−1 ∈ L(Y ,X ) and

‖ F ′(x0)
−1 ([x,y;F]− [v,y;F]) ‖≤ K ‖ x−v ‖ for all x,y,v ∈ D;

(C4) There exists η > 0 such that

‖ A−1
0 F(x0) ‖≤ η;

(C ?
4 ) There exists η > 0 for each λ ∈ [0,1] such that

‖ B−1
0 F(x0) ‖≤ η.

We shall refer to (C1)–(C4) as the (C ) conditions. From analyzing the semilocal conver-

gence of the simplified secant method, it was shown [18] that the convergence criteria are

milder than those of secant-like method given in [21]. Consequently, the decreasing and

accessibility regions of (13.1.2) can be improved. Moreover, the semilocal convergence of

(13.1.2) is guaranteed.

In the present chapter we show: an even larger convergence domain can be obtained

under the same or weaker sufficient convergence criteria for method (13.1.2). In view of

(C3) we have that
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(C5) There exists M0 > 0 such that

‖ A−1
0 ([x,y;F]− [x−1,x0;F ]) ‖≤ M0 (‖ x−x−1 ‖ + ‖ y−x0 ‖) for all x,y ∈ D.

We shall also use the conditions

(C6) There exist x0 ∈ D and M1 > 0 such that F ′(x0)
−1 ∈ L(Y ,X ) and

‖ F ′(x0)
−1 ([x,y;F]−F ′(x0)) ‖≤ M1 (‖ x−x0 ‖ + ‖ y−x0 ‖) for all x,y ∈ D;

(C7) There exist x0 ∈ D and M2 > 0 such that F ′(x0)
−1 ∈ L(Y ,X ) and

‖ F ′(x0)
−1 (F ′(x)−F ′(x0)) ‖≤ M2 (‖ x−x0 ‖ + ‖ y−x0 ‖) for all x,y ∈ D.

Note that M0 ≤ M, M2 ≤ M1, L ≤ M hold in general and M/M0, M1/M2, M/L can be

arbitrarily large [6, 7, 8, 9, 10, 14]. We shall refer to (C1), (C2), (C ??
3 ), (C ?

4 ), (C6) as the

(C ?) conditions and (C1), (C2), (C ?
3 ), (C ?

4 ), (C5) as the (C ??) conditions. Note that (C5) is not

additional hypothesis to (C3), since in practice the computation of constant M requires that

of M0. Note that if (C6) holds, then we can set M2 = 2M1 in (C7).

The chapter is organized as follows. In Section 13.2. we use the (C ?) and (C ??) con-

ditions instead of the (C ) conditions to provide new semilocal convergence analyses for

method (13.1.2) under weaker sufficient criteria than those given in [18, 19, 22, 27, 28].

This way we obtain a larger convergence domain and a tighter convergence analysis. Two

numerical examples, where we illustrate the improvement of the domain of starting points

achieved with the new semilocal convergence results, are given in the Section 13.3..

13.2. Semilocal Convergence of Secant-Like Method

We present the semilocal convergence of secant-like method. First, we need some results

on majorizing sequences for secant-like method.

Lemma 13.2.1. Let c ≥ 0, η > 0, M1 > 0, K > 0 and λ ∈ [0,1]. Set t−1 = 0, t0 = c and

t1 = c+η. Define scalar sequences {qn}, {tn}, {αn} for each n = 0,1, · · · by

qn = (1−λ) (tn− t0)+(1+λ) (tn+1− t0),

tn+2 = tn+1 +
K (tn+1− tn +(1−λ) (tn− tn−1))

1−M1 qn

(tn+1− tn), (13.2.1)

αn =
K (tn+1− tn +(1−λ) (tn− tn−1))

1−M1 qn

, (13.2.2)

function { fn} for each n = 1,2, · · · by

fn(t) = K ηtn +K (1−λ)η tn−1 +M1 η((1−λ) (1+ t + · · ·+ tn)+
(1+λ) (1+ t + · · ·+ tn+1))−1

(13.2.3)

and polynomial p by

p(t) = M1 (1+λ) t3 +(M1 (1−λ)+K) t2 −K λ t−K (1−λ). (13.2.4)
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Denote by α the smallest root of polynomial p in (0,1). Suppose that

0 < α0 ≤ α ≤ 1−2M1 η. (13.2.5)

Then, sequence {tn} is non-decreasing, bounded from above by t?? defined by

t?? =
η

1−α
+c (13.2.6)

and converges to its unique least upper bound t? which satisfies

c+η ≤ t? ≤ t??. (13.2.7)

Moreover, the following estimates are satisfied for each n = 0,1, · · ·

0 ≤ tn+1− tn ≤ αn η (13.2.8)

and

t?− tn ≤
αn η

1−α
. (13.2.9)

Proof. We shall first prove that polynomial p has roots in (0,1). If λ 6= 1, p(0) = −(1−
λ)K < 0 and p(1) = 2M1 > 0. If λ = 1, p(t)= t p(t), p(0) =−K < 0 and p(1) = 2M1 > 0.

In either case it follows from the intermediate value theorem that there exist roots in (0,1).

Denote by α the minimal root of p in (0,1). Note that, in particular for Newton’s method

(i.e. for λ = 1) and for Secant method (i.e. for λ = 0), we have, respectively by (13.2.4)

that

α =
2K

K +
√

K2 +4M1 K
(13.2.10)

and

α =
2K

K +
√

K2 +8M1 K
. (13.2.11)

It follows from (13.2.1) and (13.2.2) that estimate (13.2.8) is satisfied if

0 ≤ αn ≤ α. (13.2.12)

Estimate (13.2.12) is true by (13.2.5) for n = 0. Then, we have by (13.2.1) that

t2 − t1 ≤ α (t1− t0) =⇒ t2 ≤ t1 +α (t1− t0)

=⇒ t2 ≤ η+ t0 +αη = c+(1+α)η = c+
1−α2

1−αη
< t??.

Suppose that

tk+1− tk ≤ αk η and tk+1 ≤ c+
1−αk+1

1−α
η. (13.2.13)

Estimate (13.2.12) shall be true for k +1 replacing n if

0 ≤ αk+1 ≤ α (13.2.14)
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or

fk(α) ≤ 0. (13.2.15)

We need a relationship between two consecutive recurrent functions fk for each k = 1,2, · · ·.
It follows from (13.2.3) and (13.2.4) that

fk+1(α) = fk(α)+ p(α)αk−1 η = fk(α), (13.2.16)

since p(α) = 0. Define function f∞ on (0,1) by

f∞(t) = lim
n→∞

fn(t). (13.2.17)

Then, we get from (13.2.3) and (13.2.17) that

f∞(α) = lim
n→∞

fn(α)

= K η lim
n→∞

αn +K (1−λ)η lim
n→∞

αn−1+

M1 η

(
(1−λ) lim

n→∞
(1+α+ · · ·+αn)+

(1+λ) lim
n→∞

(1+α+ · · ·+αn+1)

)
−1

= M1 η

(
1−λ

1−α
+

1+λ

1−α

)
−1 =

2M1 η

1−α
−1,

(13.2.18)

since α ∈ (0,1). In view of (13.2.15), (13.2.16) and (13.2.18) we can show instead of

(13.2.15) that

f∞(α) ≤ 0, (13.2.19)

which is true by (13.2.5). The induction for (13.2.8) is complete. It follows that sequence

{tn} is non-decreasing, bounded from above by t?? given by (13.2.6) and as such it con-

verges to t? which satisfies (13.2.7). Estimate (13.2.9) follows from (13.2.8) by using stan-

dard majorization techniques [8, 10, 23]. The proof of Lemma 13.2.1 is complete. �

Lemma 13.2.2. Let c ≥ 0, η > 0, M1 > 0, K > 0 and λ ∈ [0,1]. Set r−1 = 0, r0 = c and

r1 = c+η. Define scalar sequences {rn} for each n = 1, · · · by

r2 = r1 +β1 (r1− r0)

rn+2 = rn+1 +βn (rn+1− rn),
(13.2.20)

where

β1 =
M1 (r1 − r0 +(1−λ) (r0− r−1))

1−M1 q1

,

βn =
K (rn+1− rn +(1−λ) (rn− rn−1))

1−M1 qn

f or each n = 2,3, · · ·

and function {gn} on [0,1) for each n = 1,2, · · · by

gn(t) = K (t +(1−λ)) tn−1 (r2− r1)+

M1 t

(
(1−λ)

1− tn+1

1− t
+(1+λ)

1− tn+2

1− t

)
(r2 − r1)+(2M1 η−1) t.

(13.2.21)
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Suppose that

0 ≤ β1 ≤ α ≤ 1− 2M1 (r2− r1)

1−2M1 η
, (13.2.22)

where α is defined in Lemma 13.2.1. Then, sequence {rn} is non-decreasing, bounded from

above by r?? defined by

r?? = c+η +
r2 − r1

1−α
(13.2.23)

and converges to its unique least upper bound r? which satisfies

c+η ≤ r? ≤ r??. (13.2.24)

Moreover, the following estimates are satisfied for each n = 1, · · ·

0 ≤ rn+2− rn+1 ≤ αn (r2− r1). (13.2.25)

Proof. We shall use mathematical induction to show that

0 ≤ βn ≤ α. (13.2.26)

Estimate (13.2.26) is true for n = 0 by (13.2.22). Then, we have by (13.2.20) that

0 ≤ r3 − r2 ≤ α (r2− r1) =⇒ r3 ≤ r2 +α (r2 − r1)
=⇒ r3 ≤ r2 +(1+α) (r2− r1)− (r2 − r1)

=⇒ r3 ≤ r1 +
1−α2

1−α
(r2− r1) ≤ r??.

Suppose (13.2.26) holds for each n ≤ k, then, using (13.2.20), we obtain that

0 ≤ rk+2− rk+1 ≤ αk (r2 − r1) and rk+2 ≤ r1 +
1−αk+1

1−α
(r2 − r1). (13.2.27)

Estimate (13.2.26) is certainly satisfied, if

gk(α) ≤ 0, (13.2.28)

where gk is defined by (13.2.21). Using (13.2.21), we obtain the following relationship

between two consecutive recurrent functions gk for each k = 1,2, · · ·

gk+1(α) = gk(α)+ p(α)αk−1 (r2 − r1) = gk(α), (13.2.29)

since p(α) = 0. Define function g∞ on [0,1) by

g∞(t) = lim
k→∞

gk(t). (13.2.30)

Then, we get from (13.2.21) and (13.2.30) that

g∞(α) = α

(
2M1 (r2− r1)

1−α
+2M1 η−1

)
. (13.2.31)

In view of (13.2.28)–(13.2.31) to show (13.2.28), it suffices to have g∞(α) ≤ 0, which true

by the right hand hypothesis in (13.2.22). The induction for (13.2.26) (i.e. for (13.2.25)) is

complete. The rest of the proof is omitted (as identical to the proof of Lemma 13.2.1). The

proof of Lemma 13.2.2 is complete. �
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Remark 13.2.3. Let us see how sufficient convergence criterion on (13.2.5) for sequence

{tn} simplifies in the interesting case of Newton’s method. That is when c = 0 and λ = 1.

Then, (13.2.5) can be written for L0 = 2M1 and L = 2K as

h0 =
1

8
(L+4L0 +

√
L2 +8L0 L)η ≤ 1

2
. (13.2.32)

The convergence criterion in [18] reduces to the famous for it simplicity and clarity Kan-

torovich hypothesis

h = Lη ≤ 1

2
. (13.2.33)

Note however that L0 ≤ L holds in general and L/L0 can be arbitrarily large [6, 7, 8, 9, 10,

14]. We also have that

h ≤ 1

2
=⇒ h0 ≤

1

2
(13.2.34)

but not necessarily vice versa unless if L0 = L and

h0

h
−→ 1

4
as

L

L0

−→ ∞. (13.2.35)

Similarly, it can easily be seen that the sufficient convergence criterion (13.2.22) for se-

quence {rn} is given by

h1 =
1

8
(4L0 +

√
L0 L+8L2

0 +
√

L0 L)η ≤ 1

2
. (13.2.36)

We also have that

h0 ≤
1

2
=⇒ h1 ≤

1

2
(13.2.37)

and
h1

h
−→ 0,

h1

h0

−→ 0 as
L0

L
−→ 0. (13.2.38)

Note that sequence {rn} is tighter than {tn} and converges under weaker conditions. In-

deed, a simple inductive argument shows that for each n = 2,3, · · ·, if M1 < K, then

rn < tn, rn+1− rn < tn+1− tn and r? ≤ t?. (13.2.39)

We have the following usefull and obvious extensions of Lemma 13.2.1 and Lemma

13.2.2, respectively.

Lemma 13.2.4. Let N = 0,1,2, · · · be fixed. Suppose that

t1 ≤ t2 ≤ ·· · ≤ tN ≤ tN+1, (13.2.40)

1

M1

> (1−λ) (tN − t0)+(1+λ) (tN+1− t0) (13.2.41)

and

0 ≤ αN ≤ α ≤ 1−2M1 (tN+1− tN). (13.2.42)
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Then, sequence {tn} generated by (13.2.1) is nondecreasing, bounded from above by t??

and converges to t? which satisfies t? ∈ [tN+1, t
??]. Moreover, the following estimates are

satisfied for each n = 0,1, · · ·

0 ≤ tN+n+1− tN+n ≤ αn (tN+1− tN) (13.2.43)

and

t?− tN+n ≤
αn

1−α
(tN+1− tN). (13.2.44)

Lemma 13.2.5. Let N = 1,2, · · · be fixed. Suppose that

r1 ≤ r2 ≤ ·· · ≤ rN ≤ rN+1, (13.2.45)

1

M1

> (1−λ) (rN − r0)+(1+λ) (rN+1− r0) (13.2.46)

and

0 ≤ βN ≤ α ≤ 1− 2M1 (rN+1− rN)

1−2M1 (rN − rN−1)
. (13.2.47)

Then, sequence {rn} generated by (13.2.20) is nondecreasing, bounded from above by r??

and converges to r? which satisfies r? ∈ [rN+1, r??]. Moreover, the following estimates are

satisfied for each n = 0,1, · · ·

0 ≤ rN+n+1− rN+n ≤ αn (rN+1− rN) (13.2.48)

and

r?− rN+n ≤
αn

1−α
(rN+1− rN). (13.2.49)

Next, we present the following semilocal convergence result for secant-like method

under the (C ?) conditions.

Theorem 13.2.6. Suppose that the (C ?), Lemma 13.2.1 (or Lemma 13.2.4) conditions and

U(x0, t
?) ⊆ D (13.2.50)

hold. Then, sequence {xn} generated by the secant-like method is well defined, remains in

U(x0, t
?) for each n =−1,0,1, · · · and converges to a solution x? ∈U(x0, t

?−c) of equation

F(x) = 0. Moreover, the following estimates are satisfied for each n = 0,1, · · ·

‖ xn+1−xn ‖≤ tn+1− tn (13.2.51)

and

‖ xn −x? ‖≤ t?− tn. (13.2.52)

Furthemore, if there exists r ≥ t? such that

U(x0, r)⊆ D (13.2.53)

and

r + t? <
1

M1

or r + t? <
2

M2

, (13.2.54)

then, the solution x? is unique in U(x0, r).
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Proof. We use mathematical induction to prove that

‖ xk+1 −xk ‖≤ tk+1− tk (13.2.55)

and

U(xk+1, t
?− tk+1) ⊆U(xk, t

?− tk) (13.2.56)

for each k = −1,0,1, · · ·. Let z ∈U(x0, t
?− t0). Then, we obtain that

‖ z−x−1 ‖≤‖ z−x0 ‖ + ‖ x0 −x−1 ‖≤ t?− t0 +c = t? = t?− t−1,

which implies z ∈ U(x−1, t
?− t−1). Let also w ∈U(x0, t

?− t1). We get that

‖ w−x0 ‖≤‖ w−x1 ‖+ ‖ x1 −x0 ‖≤ t?− t1 + t1 − t0 = t? = t?− t0.

That is w ∈U(x0, t
?− t0). Note that

‖ x−1 −x0 ‖≤ c = t0 − t−1 and ‖ x1 −x0 ‖=‖ B−1
0 F(x0) ‖≤ η = t1 − t0 < t?,

which implies x1 ∈U(x0, t
?)⊆ D. Hence, estimates (13.2.51) and (13.2.52) hold for k =−1

and k = 0. Suppose (13.2.51) and (13.2.52) hold for all n ≤ k. Then, we obtain that

‖ xk+1 −x0 ‖≤
k+1

∑
i=1

‖ xi −xi−1 ‖≤
k+1

∑
i=1

(ti − ti−1) = tk+1− t0 ≤ t?

and

‖ yk −x0 ‖≤ λ ‖ xk −x0 ‖ +(1−λ) ‖ xk−1−x0 ‖≤ λ t? +(1−λ) t? = t?.

Hence, xk+1,yk ∈ U(x0, t
?). Let Ek := [xk+1,xk;F] for each k = 0,1, · · ·. Using (13.1.2),

Lemma 13.2.1 and the induction hypotheses, we get that

‖ F ′(x0)
−1 (Bk+1−F ′(x0)) ‖≤ M1 (‖ yk+1−x0 ‖+ ‖ xk+1−x0 ‖)

≤ M1 ((1−λ) ‖ xk −x0 ‖ +λ ‖ xk+1−x0 ‖ + ‖ xk+1 −x0 ‖)
≤ M1 ((1−λ) (tk − t0)+(1+λ) (tk+1− t0)) < 1,

(13.2.57)

since, yk+1−x0 = λ(xk+1−x0)+(1−λ) (xk −x0) and

‖ yk+1 −x0 ‖=‖ λ(xk+1−x0)+(1−λ) (xk −x0) ‖
≤ λ ‖ xk+1−x0 ‖ +(1−λ) ‖ xk −x0 ‖ .

It follows from (13.2.57) and the Banach lemma on invertible operators that B−1
k+1 exists and

‖ B−1
k+1 F ′(x0) ‖≤

1

1−Θk

≤ 1

1−M1 qk+1

, (13.2.58)

where Θk = M1 ((1−λ) ‖ xk −x0 ‖ +(1+λ) ‖ xk+1−x0 ‖). In view of (13.1.2), we obtain

the identity

F(xk+1) = F(xk+1)−F(xk)−Bk (xk+1−xk) = (Ek −Bk) (xk+1−xk). (13.2.59)
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Then, using the induction hypotheses, the (C ?) condition and (13.2.59), we get in turn that

‖ F ′(x0)
−1 F(xk+1) ‖ = ‖ F ′(x0)

−1 (Ek −Bk) (xk+1−xk) ‖
≤ K ‖ xk+1−yk ‖‖ xk+1−xk ‖
≤ K (‖ xk+1 −xk ‖ +(1−λ) ‖ xk −xk−1 ‖) ‖ xk+1−xk ‖
≤ K (tk+1− tk +(1−λ) (tk− tk−1)) (tk+1− tk),

(13.2.60)

since, xk+1−yk = xk+1−xk +(1−λ) (xk −xk−1) and

‖ xk+1−yk ‖≤‖ xk+1 −xk ‖ +(1−λ) ‖ xk −xk−1 ‖≤ tk+1− tk +(1−λ) (tk − tk−1).

It now follows from (13.1.2), (13.2.1), (13.2.58)–(13.2.60) that

‖ xk+2−xk+1 ‖ ≤ ‖ B−1
k+1 F ′(x0) ‖‖ F ′(x0)

−1 F(xk+1) ‖
≤ K (tk+1− tk +(1−λ) (tk+1−xk)) (tk+1− tk)

1−M1 qk+1

= tk+2− tk+1,

which completes the induction for (13.2.55). Furthemore, let v ∈U(xk+2, t
?− tk+2). Then,

we have that
‖ v−xk+1 ‖ ≤ ‖ v−xk+2 ‖ + ‖ xk+2 −xk+1 ‖

≤ t?− tk+2 + tk+2− tk+1 = t?− tk+1,

which implies v ∈U(xk+1, t
?−tk+1). The induction for (13.2.55) and (13.2.56) is complete.

Lemma 13.2.1 implies that {tk} is a complete sequence. It follows from (13.2.55) and

(13.2.56) that {xk} is a complete sequence in a Banach space X and as such it converges

to some x? ∈ U(x0, t
?) (since U(x0, t

?) is a closed set). By letting k −→ ∞ in (13.2.60), we

get that F(x?) = 0. Moreover, estimate (13.2.52) follows from (13.2.51) by using standard

majorization techniques [8, 10, 23]. To show the uniqueness part, let y? ∈ U(x0, r) be such

F(y?) = 0, where r satisfies (13.2.53) and (13.2.54). We have that

‖ F ′(x0)
−1 ([y?,x?;F]−F ′(x0)) ‖ ≤ M1 (‖ y? −x0 ‖ + ‖ x? −x0 ‖)

≤ M1 (t? + r) < 1.
(13.2.61)

It follows by (13.2.61) and the Banach lemma on invertible operators that linear operator

[y?,x?;F]−1 exists. Then, using the identity 0 = F(y?)−F(x?) = [y?,x?;F] (y? − x?), we

deduce that x? = y?. The proof of Theorem 13.2.6 is complete. �

In order for us to present the semilocal result for secant-like method under the (C ??)

conditions, we first need a result on a majorizing sequence. The proof in given in Lemma

13.2.1.

Remark 13.2.7. Clearly, (13.2.22) (or (13.2.47)), {rn} can replace (13.2.5) (or (13.2.42)),

{tn}, respectively in Theorem 13.2.6.

Lemma 13.2.8. Let c ≥ 0, η > 0, L > 0, M0 > 0 with M0 c < 1 and λ ∈ [0,1]. Set

s−1 = 0, s0 = c, s1 = c+η, K̃ =
L

1−M0 c
and M̃1 =

M0

1−M0 c
.
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Define scalar sequences {q̃n}, {sn}, {α̃n} for each n = 0,1, · · · by

q̃n = (1−λ) (sn− s0)+(1+λ) (sn+1− s0),

sn+2 = sn+1 +
K̃ (sn+1− sn +(1−λ) (sn− sn−1))

1−M̃1 q̃n

(sn+1− sn),

α̃n =
K̃ (sn+1− sn +(1−λ) (sn− sn−1))

1−M̃1 q̃n

,

function { f̃n} for each n = 1,2, · · · by

f̃n(t) = K̃ ηtn + K̃ (1−λ)η tn−1 +M̃1 η((1−λ) (1+ t + · · ·+ tn)+

(1+λ) (1+ t + · · ·+ tn+1))−1

and polynomial p̃ by

p̃(t) = M̃1 (1+λ) t3 +(M̃1 (1−λ)+ K̃) t2− K̃ λ t− K̃ (1−λ).

Denote by α̃ the smallest root of polynomial p̃ in (0,1). Suppose that

0 ≤ α̃0 ≤ α̃ ≤ 1−2M̃1 η. (13.2.62)

Then, sequence {sn} is non-decreasing, bounded from above by s?? defined by

s?? =
η

1− α̃
+c

and converges to its unique least upper bound s? which satisfies c+η ≤ s? ≤ s??. Moreover,

the following estimates are satisfied for each n = 0,1, · · ·

0 ≤ sn+1− sn ≤ α̃n η and s?− sn ≤
α̃n η

1− α̃
.

Next, we present the semilocal convergence result for secant-like method under the

(C ??) conditions.

Theorem 13.2.9. Suppose that the (C ??) conditions, (13.2.62) (or Lemma 13.2.2 conditions

with α̃n, α̃, M̃1 replacing, respectively, αn, α, M1) and U(x0, s?) ⊆ D hold. Then, sequence

{xn} generated by the secant-like method is well defined, remains in U(x0, s?) for each

n =−1,0,1, · · · and converges to a solution x? ∈U(x0, s?) of equation F(x) = 0. Moreover,

the following estimates are satisfied for each n = 0,1, · · ·

‖ xn+1 −xn ‖≤ sn+1− sn and ‖ xn −x? ‖≤ s?− sn.

Furthemore, if there exists r ≥ s? such that U(x0, r) ⊆ D and r + s? + c < 1/M0, then, the

solution x? is unique in U(x0, r).
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Proof. The proof is analogous to Theorem 13.2.6. Simply notice that in view of (C5), we

obtain instead of (13.2.57) that

‖ A−1
0 (Bk+1−A0) ‖≤ M0 (‖ yk+1−x−1 ‖ + ‖ xk+1−x0 ‖)

≤ M0 ((1−λ) ‖ xk −x0 ‖+λ ‖ xk+1−x0 ‖ + ‖ x0 −x−1 ‖ + ‖ xk+1 −x0 ‖)
≤ M0 ((1−λ) (sk − s0)+(1+λ) (sk+1− s0)+c) < 1,

leading to B−1
k+1 exists and

‖ B−1
k+1 A0 ‖≤

1

1−Ξk

,

where Ξk = M0 ((1−λ) (sk− s0)+(1+λ) (sk+1− s0)+c). Moreover, using (C ?
3 ) instead of

(C ??
3 ), we get that

‖ A−1
0 F(xk+1) ‖≤ L(sk+1− sk +(1−λ) (sk− sk−1)) (sk+1− sk).

Hence, we have that

‖ xk+2−xk+1 ‖≤‖ B−1
k+1 A0 ‖‖ A−1

0 F(xk+1) ‖
≤ L(sk+1− sk +(1−λ) (sk− sk−1)) (sk+1− sk)

1−M0 ((1+λ) (sk+1− s0)+(1−λ) (sk− s0)+c)

≤ K̃ (sk+1− sk +(1−λ) (sk − sk−1)) (sk+1− sk)

1−M̃1 ((1+λ) (sk+1− s0)+(1−λ) (sk− s0))
= sk+2− sk+1.

The uniqueness part is given in Theorem 13.2.6 with r, s? replacing R2 and R0, respectively.

The proof of Theorem 13.2.9 is complete. �

Remark 13.2.10. (a) Condition (13.2.50) can be replaced by

U(x0, t
??)⊆ D, (13.2.63)

where t?? is given in the closed form by (13.2.55).

(b) The majorizing sequence {un} essentially used in [18] is defined by

u−1 = 0, u0 = c, u1 = c+η

un+2 = un+1 +
M (un+1−un +(1−λ) (un−un−1))

1−M q?
n

(un+1−un),
(13.2.64)

where

q?
n = (1−λ) (un−u0)+(1+λ) (un+1−u0).

Then, if K < M or M1 < M, a simple inductive argument shows that for each n =

2,3, · · ·

tn < un, tn+1− tn < un+1−un and t? ≤ u? = lim
n→∞

un. (13.2.65)

Clearly {tn} converges under the (C ) conditions and conditions of Lemma 2.1. More-

over, as we already showed in Remark 13.2.3, the sufficient convergence criteria of

Theorem 13.2.6 can be weaker than those of Theorem 13.2.9. Similarly if L ≤M, {sn}
is a tighter sequence than {un}. In general, we shall test the convergence criteria and

use the tightest sequence to estimate the error bounds.
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(c) Clearly the conclusions of Theorem 13.2.9 hold if {sn}, (13.2.62) are replaced by

{r̃n}, (13.2.22), where {r̃n} is defined as {rn} with M0 replacing M1 in the definition

of β1 (only at the numerator) and the tilda letters replacing the non-tilda letters in

(13.2.22).

13.3. Numerical Examples

Now, we check numerically with two examples that the new semilocal convergence results

obtained in Theorems 13.2.6 and 13.2.9 improve the domain of starting points obtained by

the following classical result given in [21].

Theorem 13.3.1. Let X and Y be two Banach spaces and F : Ω ⊆ X → Y be a nonlinear

operator defined on a non-empty open convex domain Ω. Let x−1,x0 ∈ Ω and λ ∈ [0,1].
Suppose that there exists [u,v;F] ∈ L(X ,Y), for all u,v ∈ Ω (u 6= v), and the following four

conditions

· ‖x0 −x−1‖ = c 6= 0 with x−1,x0 ∈ Ω,

· Fixed λ ∈ [0,1], the operator B0 = [y0,x0;F ] is invertible and such that ‖B−1
0 ‖ ≤ β,

· ‖B−1
0 F(x0)‖ ≤ η,

· ‖[x,y;F]− [u,v;F]‖ ≤ Q(‖x−u‖+‖y−v‖);Q ≥ 0;x,y,u,v ∈ Ω;x 6= y;u 6= v,

are satisfied. If B(x0,ρ)⊆ Ω, where ρ =
1−a

1−2a
η,

a =
η

c+η
<

3−
√

5

2
and b =

Qβc2

c+η
<

a(1−a)2

1+λ(2a−1)
, (13.3.1)

then the secant-like methods defined by (13.1.2)converge to a solution x∗ of equation F(x) =

0 with R-order of convergence at least 1+
√

5
2 . Moreover, xn,x∗ ∈ B(x0,ρ), the solution x∗ is

unique in B(x0,τ)∩Ω, where τ = 1
Qβ −ρ− (1−λ)α.

13.3.1. Example 1

We illustrate the above-mentioned with an application, where a system of nonlinear equa-

tions is involved. We see that Theorem 13.3.1 cannot guarantee the semilocal convergence

of secant-like methods (13.1.2), but Theorem 13.2.6 can do it.

It is well known that energy is dissipated in the action of any real dynamical system,

usually through some form of friction. However, in certain situations this dissipation is

so slow that it can be neglected over relatively short periods of time. In such cases we

assume the law of conservation of energy, namely, that the sum of the kinetic energy and

the potential energy is constant. A system of this kind is said to be conservative.

If ϕ and ψ are arbitrary functions with the property that ϕ(0) = 0 and ψ(0) = 0, the

general equation

µ
d2x(t)

dt2
+ψ

(
dx(t)

dt

)
+ϕ(x(t)) = 0, (13.3.2)
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can be interpreted as the equation of motion of a mass µ under the action of a restoring force

−ϕ(x) and a damping force −ψ(dx/dt). In general these forces are nonlinear, and equation

(13.3.2) can be regarded as the basic equation of nonlinear mechanics. In this chapter we

shall consider the special case of a nonlinear conservative system described by the equation

µ
d2x(t)

dt2
+ϕ(x(t)) = 0,

in which the damping force is zero and there is consequently no dissipation of energy.

Extensive discussions of (13.3.2), with applications to a variety of physical problems, can

be found in classical references [4] and [32].

Now, we consider the special case of a nonlinear conservative system described by the

equation

d2x(t)

dt2
+φ(x(t)) = 0 (13.3.3)

with the boundary conditions

x(0) = x(1) = 0. (13.3.4)

After that, we use a process of discretization to transform problem (13.3.3)–(13.3.4) into a

finite-dimensional problem and look for an approximated solution of it when a particular

function φ is considered. So, we transform problem (13.3.3)–(13.3.4) into a system of non-

linear equations by approximating the second derivative by a standard numerical formula.

Firstly, we introduce the points t j = jh, j = 0,1, . . .,m + 1, where h = 1
m+1 and m is

an appropriate integer. A scheme is then designed for the determination of numbers x j ,

it is hoped, approximate the values x(t j) of the true solution at the points t j. A standard

approximation for the second derivative at these points is

x′′j ≈
x j−1 −2x j +x j+1

h2
, j = 1,2, . . .,m.

A natural way to obtain such a scheme is to demand that the x j satisfy at each interior mesh

point t j the difference equation

x j−1 −2x j +x j+1 +h2φ(x j) = 0. (13.3.5)

Since x0 and xm+1 are determined by the boundary conditions, the unknowns are

x1,x2, . . . ,xm.

A further discussion is simplified by the use of matrix and vector notation. Introducing

the vectors

x =




x1

x2

...

xm




, vx =




φ(x1)

φ(x2)

...

φ(xm)




and the matrix

A =




−2 1 0 · · · 0

1 −2 1 · · · 0

0 1 −2 · · · 0
...

...
...

. . .
...

0 0 0 · · · −2




,
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the system of equations, arising from demanding that (13.3.5) holds for j = 1,2, . . .,m, can

be written compactly in the form

F(x)≡ Ax+h2vx = 0, (13.3.6)

where F is a function from R
m into R

m.

From now on, the focus of our attention is to solve a particular system of form (13.3.6).

We choose m = 8 and the infinity norm.

The steady temperature distribution is known in a homogeneous rod of length 1 in

which, as a consequence of a chemical reaction or some such heat-producing process, heat

is generated at a rate φ(x(t)) per unit time per unit length, φ(x(t)) being a given function of

the excess temperature x of the rod over the temperature of the surroundings. If the ends of

the rod, t = 0 and t = 1, are kept at given temperatures, we are to solve the boundary value

problem given by (13.3.3)–(13.3.4), measured along the axis of the rod. For an example we

choose an exponential law φ(x(t)) = exp(x(t)) for the heat generation.

Taking into account that the solution of (13.3.3)–(13.3.4) with φ(x(t)) = exp(x(t)) is of

the form

x(s) =

Z 1

0
G(s, t)exp(x(t))dt,

where G(s, t) is the Green function in [0,1]× [0,1], we can locate the solution x∗(s) in some

domain. So, we have

‖x∗(s)‖− 1

8
exp(‖x∗(s)‖)≤ 0,

so that ‖x∗(s)‖∈ [0,ρ1]∪ [ρ2,+∞], where ρ1 = 0.1444 and ρ2 = 3.2616 are the two positive

real roots of the scalar equation 8t −exp(t) = 0.

Observing the semilocal convergence results presented in this chapter, we can only

guarantee the semilocal convergence to a solution x∗(s) such that ‖x∗(s)‖ ∈ [0,ρ1]. For this,

we can consider the domain

Ω = {x(s) ∈C2[0,1] ; ‖x(s)‖< log(7/4), s ∈ [0,1]},

since ρ1 < log
(

7
4

)
< ρ2.

In view of what the domain Ω is for equation (13.3.3), we then consider (13.3.6) with

F : Ω̃ ⊂ R8 → R8 and

Ω̃ = {x ∈ R
8; ‖x‖< log(7/4)}.

According to the above-mentioned, vx = (exp(x1),exp(x2), . . . ,exp(x8))
t if φ(x(t)) =

exp(x(t)). Consequently, the first derivative of the function F defined in (13.3.6) is given

by

F ′(x) = A+h2diag(vx).

Moreover,

F ′(x)−F ′(y) = h2diag(z),

where y = (y1,y2, . . . ,y8)
t and z = (exp(x1)− exp(y1),exp(x2)− exp(y2), . . . ,exp(x8)−

exp(y8)). In addition,

‖F ′(x)−F ′(y)‖ ≤ h2 max
1≤i≤8

|exp(`i)| ‖x−y‖,
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where ` = (`1, `2, . . . , `8)
t ∈ Ω̃ and h = 1

9
, so that

‖F ′(x)−F ′(y)‖ ≤ 7

4
h2‖x−y‖. (13.3.7)

Considering (see [28])

[x,y;F] =

Z 1

0
F ′ (τx+(1−τ)y)dτ,

taking into account

Z 1

0
‖τ(x−u)+(1−τ)(y−v)‖dτ ≤ 1

2
(‖x−u‖+‖y−v‖) ,

and (13.3.7), we have

‖[x,y;F]− [u,v;F]‖ ≤
Z 1

0
‖F ′ (τx+(1−τ)y)−F ′ (τu+(1−τ)v)‖dτ

≤ 7

4
h2

Z 1

0
(τ‖x−u‖+(1−τ)‖y−v‖)dτ

=
7

8
h2 (‖x−u‖+‖y−v‖) .

From the last, we have L = 7
648

and M1 = 7
648

‖[F ′(x0)]
−1‖.

If we choose λ = 1
2

and the starting points x−1 = ( 1
10

, 1
10

, . . ., 1
10

)t and x0 = (0,0, . . .,0)t ,

we obtain c = 1
10 , β = 11.202658 . . . and η = 0.138304 . . ., so that (13.3.1) of Theo-

rem 13.3.1 is not satisfied, since

a =
η

c+η
= 0.580368 . . . >

3−
√

5

2
= 0.381966 . . .

Thus, according to Theorem 13.3.1, we cannot guarantee the convergence of secant-like

method (13.1.2) with λ = 1
2 for approximating a solution of (13.3.6) with φ(s) = exp(s).

However, we can do it by Theorem 13.2.6, since all the inequalities which appear in

(2.5) are satisfied:

0 < α0 = 0.023303 . . .≤ α = 0.577350 . . .≤ 1−2M1η = 0.966625 . . .,

where ‖[F ′(x0)]
−1‖ = 11.169433 . . ., M1 = 0.120657 . . . and

p(t) = (0.180986 . . .)t3 +(0.180986 . . .)t2− (0.060328 . . .)t− (0.060328 . . .).

Then, we can use secant-like method (13.1.2) with λ = 1
2 to approximate a solution of

(13.3.6) with φ(u) = exp(u), the approximation given by the vector x∗ = (x∗1,x∗2, . . . ,x
∗
8)

t

shown in Table 13.3.1 and reached after four iterations with a tolerance 10−16. In Ta-

ble 13.3.2 we show the errors ‖xn −x∗‖ using the stopping criterion ‖xn −xn−1‖ < 10−16.

Notice that the vector shown in Table 13.3.1 is a good approximation of the solution of

(13.3.6) with φ(u) = exp(u), since ‖F(x∗)‖ ≤ C×10−16. See the sequence {‖F(xn)‖} in

Table 13.3.2.
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Table 13.3.1. Approximation of the solution x∗ of (13.3.6) with φ(u) = exp(u)

n x∗i n x∗i n x∗i n x∗i
1 0.05481058 . . . 3 0.12475178 . . . 5 0.13893761 . . . 7 0.09657993 . . .
2 0.09657993 . . . 4 0.13893761 . . . 6 0.12475178 . . . 8 0.05481058 . . .

Table 13.3.2. Absolute errors obtained by secant-like method (13.1.2) with λ = 1
2

and

{‖F(xn)‖}

n ‖xn−x∗‖ ‖F(xn)‖
−1 1.3893 . . .×10−1 8.6355 . . .×10−2

0 4.5189 . . .×10−2 1.2345 . . .×10−2

1 1.43051 . . .×10−4 2.3416 . . .×10−5

2 1.14121 . . .×10−7 1.9681 . . .×10−8

3 4.30239 . . .×10−13 5.7941 . . .×10−14

13.3.2. Example 2

Consider the following nonlinear boundary value problem

{
u′′ = −u3 − 1

4
u2

u(0) = 0, u(1) = 1.

It is well known that this problem can be formulated as the integral equation

u(s) = s+
Z 1

0
Q (s, t) (u3(t)+

1

4
u2(t)) dt (13.3.8)

where, Q is the Green function:

Q (s, t) =

{
t (1− s), t ≤ s

s (1− t), s < t.

We observe that

max
0≤s≤1

Z 1

0
|Q (s, t)|dt =

1

8
.

Then problem (13.3.8) is in the form (13.1.1), where, F is defined as

[F(x)] (s) = x(s)− s−
Z 1

0
Q (s, t) (x3(t)+

1

4
x2(t)) dt.

The Fréchet derivative of the operator F is given by

[F ′(x)y] (s) = y(s)−3

Z 1

0
Q (s, t)x2(t)y(t)dt− 1

2

Z 1

0
Q (s, t)x(t)y(t)dt.



262 Ioannis K. Argyros and Á. Alberto Magreñán

Choosing x0(s) = s and R = 1 we have that ‖F(x0)‖ ≤
1+ 1

4

8
=

5

32
. Define the divided

difference defined by

[x,y;F] =

Z 1

0
F ′(τx+(1−τ)y)dτ.

Taking into account that

‖[x,y;F]− [v,y;F]‖ ≤
Z 1

0
‖F ′ (τx+(1−τ)y)−F ′ (τv+(1−τ)y)‖dτ

≤ 1

8

Z 1

0

(
3τ2‖x2 −v2‖+2τ(1−τ)‖y‖‖x−v‖+

τ

2
‖x−v‖

)
dτ

≤ 1

8

(
‖x2−v2‖+

(
‖y‖+

1

4

))
‖x−v‖

≤ 1

8

(
‖x+v‖+‖y‖+

1

4

)
‖x−v‖

≤ 25

32
‖x−v‖

Choosing x−1(s) =
9s

10
, we find that

‖1−A0‖ ≤
Z 1

0
‖F ′ (τx0 +(1−τ)x−1)‖dτ

≤ 1

8

Z 1

0

(
3

(
τ+(1−τ)

9

10

)2

+
1

2

(
τ+(1−τ)

9

10

))
dτ

≤ 0.409375 . . .

Using the Banach Lemma on invertible operators we obtain

‖A−1
0 ‖ ≤ 1.69312 . . .

and so

L ≥ 25

32
‖A−1

0 ‖= 1.32275 . . .

.

In an analogous way, choosing λ = 0.8 we obtain

M0 = 0.899471 . . .,

‖B−1
0 ‖ = 1.75262 . . .

and

η = 0.273847 . . ..

Notice that we can not guarantee the convergence of the secant method by Theorem

13.3.1 since the first condition of (3.1) is not satisfied:

a =
η

c+η
= 0.732511 . . . >

3−
√

5

2
= 0.381966 . . .
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On the other hand, observe that

M̃1 = 0.0988372 . . .,

K̃ = 1.45349 . . .,

α0 = 0.434072 . . .,

α = 0.907324 . . .

and

1−2M̃1η = 0.945868 . . ..

And condition (2.62) 0 < α0 ≤ α ≤ 1− 2M̃1η is satisfied and as a consequence we can

ensure the convergence of the secant method by Theorem 13.2.9.

Conclusion

We presented a new semilocal convergence analysis of the secant-like method for approx-

imating a locally unique solution of an equation in a Banach space. Using a combination

of Lipschitz and center-Lipschitz conditions, instead of only Lipschitz conditions invested

in [18], we provided a finer analysis with larger convergence domain and weaker sufficient

convergence conditions than in [15, 18, 19, 22, 27, 28]. Numerical examples validate our

theoretical results.
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Chapter 14

Solving Nonlinear Equations System

via an Efficient Genetic Algorithm

with Symmetric and Harmonious

Individuals

14.1. Introduction

In this chapter, we introduce genetic algorithms as a general tool for solving optimum prob-

lems. As a special case we use these algorithms to find the solution of the system of non-

linear equations 



f1(x1,x2, . . . ,xn) = 0,

f2(x1,x2, . . . ,xn) = 0,
...

fn(x1,x2, . . . ,xn) = 0,

(14.1.1)

where f = ( f1, f2, . . ., fn) : D = [a1,b1]× [a2,b2] · · ·× [an,bn] ⊆ Rn → Rn is continuous.

Genetic algorithms (GA) were first introduced in the 1970s by John Holland at Univer-

sity of Michigan [8]. Since then, a great deal of developments on GA have been obtained,

see [5, 6] and references therein. GA are used as an adaptive machine study approach in

their former period of development, and they have been successfully applied in numerous

areas such as artificial intelligence, self-adaption control, systematic engineering, image

processing, combinatorial optimization and financial system. GA show us very extensive

application prospect. Genetic algorithms are search algorithms based on the mechanics of

natural genetics.

In a genetic algorithm, a population of candidate solutions (called individuals or phe-

notypes) to an optimization problem is evolved towards better solutions. Each candidate

solution has a set of properties (its chromosomes or genotype) which can be mutated and

altered; traditionally, solutions are represented in binary as strings of 0s and 1s, but other

encodings are also possible [5]. The evolution usually starts from a population of randomly

generated individuals and happens in generations. In each generation, the fitness of every
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individual in the population is evaluated, the more fit individuals are stochastically selected

from the current population, and each individual’s genome is modified (recombined and

possibly randomly mutated) to form a new population. The new population is then used

in the next iteration of the algorithm. Commonly, the algorithm terminates when either a

maximum number of generations has been produced, or a satisfactory fitness level has been

reached for the population.

In the use of genetic algorithms to solve the practical problems, the premature phe-

nomenon often appears, which limits the search performance of genetic algorithm. The

reason for causing premature phenomenon is that highly similar exists between individuals

after some generations, and the opportunity of the generation of new individuals by further

genetic manipulation has been reduced greatly. Many ideas have been proposed to avoid

the premature phenomenon [6, 15, 16, 18]. [18] introduces two special individuals at each

generation of genetic algorithm to make the population maintains diversity in the problem

of finding the minimized distance between surfaces, and the computational efficiency has

been improved. We introduces other two special individuals at each generation of genetic

algorithm in the same problem in [15], and the computational efficiency has been further

improved. Furthermore, we suggest to put some symmetric and harmonious individuals at

each generation of genetic algorithm applied to a general optimal problem in [16], and good

computational efficiency has been obtained. Some application of our methods in reservoir

mid-ong hydraulic power operation has been given in [17].

Recently many authors use GA to solve nonlinear equations system, see [9, 3, 11, 10,

14]. These works give us impression that GA are effective methods for solving nonlin-

ear equations system. However, efforts are still needed so as to solve nonlinear equations

system more effectively. In this chapter, we present a new genetic algorithm to solve Eq.

(14.1.1).

The chapter is organized as follows: We convert the equation problem (14.1.1) to an

optimal problem in Section 14.2, in Section 14.3 we present our new genetic algorithm with

symmetric and harmonious individuals for the corresponding optimal problem, in Section

14.4 we give a mixed method by our method with Newton’s method, whereas in Section

14.5 we provide some numerical examples to show that our new methods are very effective.

Some remarks and conclusions are given in the concluding section 14.6.

14.2. Convert (14.1.1) to an Optimal Problem

Let us define function F : D = [a1,b1]× [a2,b2] · · ·× [an,bn] ⊆ Rn → R as follows

F(x1,x2, . . . ,xn) =
1

n

n

∑
i=1

| fi(x1,x2, . . . ,xn)|. (14.2.1)

Then, we convert problem (14.1.1) to the following optimal problem

min F(x1,x2, . . . ,xn)
s.t (x1,x2, . . .,xn) ∈ D.

(14.2.2)

Suppose x? ∈ D is a solution of Eq. (14.1.1), then we have F(x?) = 0 from the definition

(14.2.1) of F. Since F(x) ≥ 0 holds for all x ∈ D, we deduce that x? is the solution of
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problem (14.2.2). On the other hand, assume x? ∈ D is a solution of problem (14.2.2). Then

for all x ∈ D, we have F(x) ≥ F(x?). Now we suppose (14.1.1) has at least one solution

denoted as y?. Then, we have 0 ≤ F(x?) ≤ F(y?) = 0, that is F(x?) = 0 is true and x? is

a solution of Eq. (14.1.1). Hence, Eq. (14.1.1) is equivalent to problem (14.2.2) if Eq.

(14.1.1) has at least one solution.

From now on, we always suppose (14.1.1) has at least one solution, and try to find its

solution by finding a solution of (14.2.2) via a genetic algorithm.

14.3. New Genetic Algorithm: SHEGA

Since the simple genetic algorithm (called standard genetic algorithm) is not very efficient

in practical computation, many varieties have been given [6]. In this chapter, we give a new

genetic algorithm. Our main idea is to put pairs of symmetric and harmonious individuals

in generations.

14.3.1. Coding

We use the binary code in our method, as used in the simple genetic algorithm [6]. The

binary code is the most used code in GA, which represents the candidate solution by a

string of 0s and 1s. The length of the string is relation to the degree of accuracy needed for

the solution, and satisfies the following inequality

Li ≥ log2

bi −ai

εi

, (14.3.1)

where, Li is the length of the string standing for the i-component of an individual, and εi is

the degree of accuracy needed for xi. In fact, we should choose the minimal positive integer

to satisfy (14.3.1) for Li. Usually, all εi are equal to one another, so it can be denoted

by εx in this status. For example, let a1 = 0, b1 = 1 and εx = 10−6, then we can choose

L1 = 20, since L1 ≥ log2 106 ≈ 19.93156857. Variable x1 ∈ [a1,b1] is in the form of real

numbers, it can be represented by 20 digits of the binary code:00000000000000000000

stands for 0, 00000000000000000001 stands for 1
2Li

, 00000000000000000010 stands for
2

2Li
,. . . , 11111111111111111111 stands for 1.

14.3.2. Fitness Function

Since the simple genetic algorithm is used to find a solution of a maximal problem, one

should make some change for the fitness function. In this chapter, we define the fitness

function as follows

g(x1,x2, . . . ,xn) =
1

1+F(x1,x2, . . . ,xn)
. (14.3.2)

For this function g, it satisfies: (1) The fitness value is always positive, which is needed

in the following genetic operators; (2) The fitness value will be bigger if the point

(x1,x2, . . . ,xn) is closer to a solution x? of problem (14.2.2).
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14.3.3. Selection

We use Roulette Wheel Section (called proportional election operator) in our method, as

used in the simple genetic algorithm. The probability of individual is selected and the

fitness function is proportional to the value. Suppose the size of population is N, the fitness

of individual i is gi. The individual i was selected to the next generation with probability pi

given by

pi =
gi

∑N
i=1 gi

(i = 1,2, · · · ,N). (14.3.3)

14.3.4. Symmetric and Harmonious Individuals

We first give the definition of symmetric and harmonious individuals.

Definition 14.3.1. Suppose individuals M1 = (x1,x2, . . .,xn) and M2 = (y1,y2, . . . ,yn) can

be represented in the binary code by M′
1 = (x11

x12
. . .x1L1

x21
x22

. . .x2L2
. . .xn1

xn2

. . .xnLn
) and M′

2 = (y11
y12

. . .y1L1
y21

y22
. . .y2L2

. . .yn1
yn2

. . .ynLn
), respectively. They are

called symmetric and harmonious individuals if and only if xi j
= 1− yi j

holds for any

i = 1,2, . . .,n and j = 1,2, . . .,Li.

In Definition 14.3.1 individuals M′
1 and M′

2 are complements in the binary sense.

In order to avoid the premature phenomenon of genetic algorithm, we introduce some

pair of symmetric and harmonious individuals in generation. We don’t use the fixed sym-

metric and harmonious individuals as in [15] and [18]. Contrarily, we generate pair of

symmetric and harmonious individuals randomly. On one hand, these pair of symmetry

of individuals continue to enrich the diversity of the population. On the other hand, they

continue to explore the space even if they haven’t been selected to participate in genetic

manipulation of exchange or mutation.

Suppose the size of population is N, and λ ∈ [0,0.5) is a parameter. Let brc be the

biggest integer equal to or less than r. We introduce bλ∗Nc pairs of symmetric and harmo-

nious individuals in current generation provided that the quantity between the best fitness

value of the last generation to the one of the current generation is less than a preset precision

denoted by ε1. Here, we call λ as symmetry and harmonious factor.

14.3.5. Crossover and Mutation

We use one-point crossover operator in our genetic algorithm, just as used in the simple

genetic algorithm. That is, a single crossover point on both parents’ organism strings is

selected. All data beyond that point in either organism string is swapped between the two

parent organisms. The resulting organisms are the children. An example is shown as fol-

lows:
A : 10110111 | 001

B : 00011100 | 110
⇒ A′ : 10110111 | 110

B′ : 00011100 | 001.

We use bit string mutation, just as used in the simple genetic algorithm. That is, the

mutation of bit strings ensue through bit flips at random positions. The following example

is provided to show this:

A : 1010 1 0101010 ⇒ A′ : 1010 0 0101010.
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14.3.6. Elitist Model

It is well-known that the global convergence of the simple genetic algorithm cannot be

assured [6]. In order to guarantee the global convergence of the genetic algorithm, we use an

elitist model (or the optimal preservation strategy) in this chapter. That is, at each generation

we reserves the individual with the maximum fitness value to the next generation.

14.3.7. Procedure

For the convenience of discussion, we call our genetic algorithm with symmetric and har-

monious individuals as SHEGA, and call the simple genetic algorithm with the elitist model

as EGA. We can give the procedure of SHEGA as follows:

Step 1. Assignment of parameters of genetic algorithm: The size N of population, the

number n of variables of (14.2.2), the lengthes L1,L2, . . .,Ln (computed from (14.3.1)) of

the binary string of the components of an individual, symmetry and harmonious factor λ,

controlled precision ε1 in subsection 14.3.4 to introduce the symmetric and harmonious

individuals, the probability pc of the crossover operator, the probability pm of the mutation

operator, and the largest genetic generation G.

Step 2. Generate the initial population randomly.

Step 3. Calculate the fitness value of each individual of the contemporary population,

and reserve the optimal individual of the contemporary population to the next generation.

Step 4. If the distance between the best fitness value of the last generation to that of

the current generation is less than a preset precision ε1, we generate N − 2 ∗ bλ ∗Nc− 1

individuals using Roulette Wheel Section and bλ ∗Nc pairs of symmetry and harmonious

individuals randomly. Otherwise we generate N −1 individuals using Roulette Wheel Sec-

tion directly. The population is then divided into two parts: one is the seed subpopulation

constituted by symmetry and harmonious individuals, and the other is a subpopulation ready

to be bred and constituted by the residual individuals.

Step 5. Take the crossover operator between each individual in the seed subpopulation

to one individual selected from the other subpopulation randomly. Take the crossover op-

erator each other using two two paired method with probability pc and take the mutation

operator with probability pm for each residual individual in the subpopulation ready to be

bred.

Step 6. Repeat Step 3-Step 5 until the maximum genetic generation G is reached.

14.4. Mixed Algorithm: SHEGA-Newton Method

In order to improve further the efficiency of SHEGA, we can apply it by mixed with a

classical iterative method such as Newton’s method [2, 13]

x(k+1) = x(k)− f ′(x(k))−1 f (x(k)) (k ≥ 0) (x(0) ∈ D). (14.4.1)

Here, f ′(x) denotes the Fréchet derivative of function f .

Local as well as semilocal convergence results for Newton method (14.4.1) under var-

ious assumptions have been given by many authors [1, 2, 4, 7, 12, 13]. It is well-known
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that Newton’s method converges to the solution quadratically provided that some neces-

sary conditions are satisfied. However, there are two deficiencies to limit the application of

Newton’s method. First, function f must be differentiable, which will not be satisfied in

practical application. Second, a good initial point for beginning the iterative is key to en-

sure the convergence of the iterative sequence, but it is a difficult task to choose the initial

point in advance. In fact, choosing good initial points to begin the corresponding itera-

tion is the common question for all the classical iterative methods used to solve equation

(14.1.1)[2, 13].

Here, we use Newton’s method as an example. In fact, one can develop other methods

by mixing SHEGA and other iterative methods. We can state SHEGA-Newton method as

follows:

Step 1. Given the maximal iterative step S and the precision accuracy εy. Set s = 1.

Step 2. Find an initial guess x(0) ∈ D by using SHEGA given in Section 3.

Step 3. Compute fi(x
(s)
1 ,x

(s)
2 , . . .,x

(s)
n )(i = 1,2, . . .,n). If F(x

(s)
1 ,x

(s)
2 , . . . ,x

(s)
n ) ≤ εy, re-

port that the approximation solution x(s) = (x
(s)
1 ,x

(s)
2 , . . .,x

(s)
n ) is found and exit from the

circulation, where F is defined in (2.1).

Step 4. Compute the Jacobian Js = f ′(x(s)) and solve the linear equations

Jsu
(s) = f (x(s)). (14.4.2)

Set x(s+1) = x(s) +u(s).

Step 5. If s ≤ S, set s = s + 1 and goto Step 3. Otherwise, report that the approximation

solution cannot be found.

14.5. Numerical Examples

In this section, we will provide some examples to show the efficiency of our new method.

Example 14.5.1. Let f be defined in D = [−3.5,2.5]× [−3.5,2.5] by

{
f1(x1,x2) = x2

1 +x2
2 +x1 +x2 −8 = 0,

f2(x1,x2) = x1x2 +x1 +x2 −5 = 0.
(14.5.1)

Let us choose parameters as follows:

N = 40, pc = 0.9, pm = 0.005, εx = 0.001, ε1 = 0.001. (14.5.2)

Since the genetic algorithms are random algorithms, we run each method 30 times, and

compare convergence number of times under various maximal generation G for EGA and

SHEGA. The comparison results are given in Table 14.5.1. We also give the comparison

results of the average of the best function value F under the fixed maximal generation

G = 300 in Table 14.5.2. Here, we say the corresponding genetic algorithm is convergent

if the function value F(x1,x2, . . .,xn) is less than a fixed precision εy. We set εy = 0.05 for

this example. Tables 1 and 2 show us that SHEGA with proper symmetry and harmonious

factor λ performs better than EGA.
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Table 14.5.1. The comparison results of convergence number of times for Example 1

G = 50 G = 100 G = 150 G = 200 G = 250 G = 300

EGA 11 11 11 11 12 12

SHEGA(λ = 0.05) 13 15 18 20 20 21

SHEGA(λ = 0.10) 8 20 23 26 29 29

SHEGA(λ = 0.15) 16 21 27 28 28 29

SHEGA(λ = 0.20) 16 26 29 30 30 30

SHEGA(λ = 0.25) 20 28 29 29 30 30

SHEGA(λ = 0.30) 22 28 30 30 30 30

SHEGA(λ = 0.35) 17 27 29 30 30 30

SHEGA(λ = 0.40) 17 29 30 30 30 30

SHEGA(λ = 0.45) 19 30 30 30 30 30

Table 14.5.2. The comparison results of the average of the best function value F for

Example 1

G = 300

EGA 0.129795093953972

SHEGA(λ = 0.05) 0.053101422547384

SHEGA(λ = 0.10) 0.041427669194903

SHEGA(λ = 0.15) 0.034877317449825

SHEGA(λ = 0.20) 0.035701604675096

SHEGA(λ = 0.25) 0.038051665705034

SHEGA(λ = 0.30) 0.039332883168632

SHEGA(λ = 0.35) 0.035780879206619

SHEGA(λ = 0.40) 0.034509424138501

SHEGA(λ = 0.45) 0.037425326021257

Example 14.5.2. Let f be defined in D = [−5,5]× [−1,3]× [−5,5] by





f1(x1,x2,x3) = 3x2
1 + sin(x1x2)−x2

3 +2 = 0,
f2(x1,x2,x3) = 2x3

1 −x2
2 −x3 +3 = 0,

f3(x1,x2,x3) = sin(2x1)+cos(x2x3)+x2 −1 = 0.
(14.5.3)

Let us choose parameters as follows:

N = 50, pc = 0.8, pm = 0.05, εx = 0.0001, ε1 = 0.001. (14.5.4)

We run each method 20 times, and compare convergence number of times under various

maximal generation G for EGA and SHEGA. The comparison results are given in Table

14.5.3. We also give the comparison results of the average of the best function value F under
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the fixed maximal generation G = 500 in Table 14.5.4. Here, we say the corresponding

genetic algorithm is convergent if the function value F(x1,x2, . . . ,xn) is less than a fixed

precision εy. We set εy = 0.02 for this example. Tables 14.5.3 and 14.5.4 show us that

SHEGA with proper symmetry and harmonious factor λ performs better than EGA.

Table 14.5.3. The comparison results of convergence number of times for Example 2

G = 100 G = 200 G = 300 G = 400 G = 500

EGA 3 4 4 4 4

SHEGA(λ = 0.05) 2 6 8 9 11

SHEGA(λ = 0.10) 2 7 11 14 15

SHEGA(λ = 0.15) 5 11 14 14 16

SHEGA(λ = 0.20) 3 11 14 17 18

SHEGA(λ = 0.25) 8 11 14 17 17

SHEGA(λ = 0.30) 8 16 16 17 17

SHEGA(λ = 0.35) 6 14 18 19 20

SHEGA(λ = 0.40) 5 14 19 19 20

SHEGA(λ = 0.45) 6 17 19 19 20

Table 14.5.4. The comparison results of the average of the best function value F for

Example 2

G = 500

EGA 0.1668487275323187

SHEGA(λ = 0.05) 0.0752619855962109

SHEGA(λ = 0.10) 0.0500864062405815

SHEGA(λ = 0.15) 0.0358268275921585

SHEGA(λ = 0.20) 0.0257859494269335

SHEGA(λ = 0.25) 0.0239622084932336

SHEGA(λ = 0.30) 0.0247106452514721

SHEGA(λ = 0.35) 0.0171980128114993

SHEGA(λ = 0.40) 0.0179659124369376

SHEGA(λ = 0.45) 0.0158999282064303

Next, we will provide an example when f is non-differentiable. Newton’s method

(14.4.1) and SHEGA-Newton cannot be used to solve this problem since f is non-

differentiable. However, SHEGA can apply. Moreover, with the same idea used for

SHEGA-Newton method, one can develop some mixed methods which don’t require the

differentiability of function f to solve the problem.
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Example 14.5.3. Let f be defined in D = [−2,2]× [1,6] by

{
f1(x1,x2) = x2

1 −x2 +1+ 1
9
|x1 −1| = 0,

f2(x1,x2) = x2
2 +x1 −7+ 1

9
|x2|= 0.

(14.5.5)

Let us choose parameters as follows:

N = 40, pc = 0.85, pm = 0.008, εx = 0.001, ε1 = 0.005. (14.5.6)

We run each method 20 times, and compare convergence number of times under various

maximal generation G for EGA and SHEGA. The comparison results are given in Table

14.5.5. We also give the comparison results of the average of the best function value F under

the fixed maximal generation G = 300 in Table 14.5.6. Here, we say the corresponding

genetic algorithm is convergent if the function value F(x1,x2, . . . ,xn) is less than a fixed

precision εy. We set εy = 0.003 for this example. Tables 14.5.5 and 14.5.6 show us that

SHEGA with proper symmetry and harmonious factor λ performs better than EGA.

Table 14.5.5. The comparison results of convergence number of times for Example 3

G = 100 G = 150 G = 200 G = 250 G = 300

EGA 6 9 10 10 10

SHEGA(λ = 0.05) 10 15 16 17 19

SHEGA(λ = 0.10) 12 15 17 18 20

SHEGA(λ = 0.15) 15 18 19 20 20

SHEGA(λ = 0.20) 15 20 20 20 20

SHEGA(λ = 0.25) 11 14 17 17 18

SHEGA(λ = 0.30) 10 14 16 17 19

SHEGA(λ = 0.35) 16 17 18 19 20

SHEGA(λ = 0.40) 10 12 18 18 20

SHEGA(λ = 0.45) 9 12 15 15 17

14.6. Conclusion

We presented a genetic algorithm as a general tool for solving optimum problems. Note that

in the special case of approximating solutions of systems of nonlinear equations there are

many deficiencies that limit the application of the usually employed methods. For example

in the case of Newton’s method function f must be differentiable and a good initial point

must be found. To avoid these problems we have introduced some pairs of symmetric and

harmonious individuals for the generation of a genetic algorithm. The population diversity

is preserved this way and the method guarantees convergence to a solution of the system.

Numerical examples are illustrating the efficiency of the new algorithm.
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Table 14.5.6. The comparison results of the average of the best function value F for

Example 3

G = 300

EGA 0.0081958187235953

SHEGA(λ = 0.05) 0.0021219384775699

SHEGA(λ = 0.10) 0.0019286950245614

SHEGA(λ = 0.15) 0.0018367719544782

SHEGA(λ = 0.20) 0.0022816080103967

SHEGA(λ = 0.25) 0.0023297925904943

SHEGA(λ = 0.30) 0.0023318357433983

SHEGA(λ = 0.35) 0.0021392510790106

SHEGA(λ = 0.40) 0.0022381534380744

SHEGA(λ = 0.45) 0.0025798012930550
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Chapter 15

On the Semilocal Convergence of

Modified Newton-Tikhonov

Regularization Method for Nonlinear

Ill-Posed Problems

15.1. Introduction

In this chapter we are concerned with the problem of approximately solving the nonlinear

ill-posed operator equation

F(x) = f , (15.1.1)

where F : D(F) ⊆ X → Y is a nonlinear operator between the Hilbert spaces X and Y.

Here and below 〈., .〉 denote the inner product and ‖.‖ denote the corresponding norm. We

assume throughout that f δ ∈ Y are the available data with

‖ f − f δ‖ ≤ δ

and (15.1.1) has a solution x̂ ( which need not be unique). Then the problem of recovery of

x̂ from noisy equation F(x) = f δ is ill-posed, in the sense that a small perturbation in the

data can cause large deviation in the solution.

Further it is assumed that F possesses a locally uniformly bounded Fréchet derivative

F ′(.) in the domain D(F) of F. A large number of problems in mathematical physics and

engineering are solved by finding the solutions of equations in a form like (15.1.1). If one

works with such problems, the measurement data will be distorted by some measurement er-

ror. Therefore, one has to consider appropriate regularization techniques for approximately

solving (15.1.1).

Iterative regularization methods are used for approximately solving (15.1.1). Recall

([20]) that, an iterative method with iterations defined by

xδ
k+1 = Φ(xδ

0,xδ
1, · · · ,xδ

k;yδ),
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where xδ
0 := x0 ∈ D(F) is a known initial approximation of x̂, for a known function Φ

together with a stopping rule which determines a stopping index kδ ∈N is called an iterative

regularization method if ‖xδ
kδ
− x̂‖ → 0 as δ → 0.

The Levenberg-Marquardt method([18], [21], [9], [10], [11], [14], [24], [6]) and iter-

atively regularized Gauss-Newton method (IRGNA) ([3], [5]) are the well-known iterative

regularization methods. In Levenberg-Marquardt method, the iterations are defined by,

xδ
k+1 = xδ

k − (A∗
k,δAk,δ +αkI)−1A∗

k,δ(F(xδ
k)−yδ), (15.1.2)

where A∗
k,δ := F ′(xδ

k)
∗ is as usual the adjoint of Ak,δ := F ′(xδ

k) and (αk) is a positive sequence

of regularization parameter ([5]). In Gauss-Newton method, the iterations are defined by

xδ
k+1 = xδ

k − (A∗
k,δAk,δ +αkI)−1[A∗

k,δ(F(xδ
k)−yδ)+αk(xδ

k −x0)] (15.1.3)

where xδ
0 := x0 and (αk) is as in (15.1.2).

In [3], Bakushinskii obtained local convergence of the method (15.1.3), under the

smoothness assumption

x̂−x0 = (F ′(x̂)∗F ′(x̂))νw, w ∈ N(F ′(x̂))⊥ (15.1.4)

with ν ≥ 1,w 6= 0 and F ′(.) is Lipschitz continuous; N(F ′(x̂)) denotes the nullspace of

F ′(x̂). For noise free case Bakushinskii ([3]) obtained the rate

‖xδ
k − x̂‖ = O(αk),

and Blaschke et.al.([5]) obtained the rate

‖xδ
k − x̂‖ = O(αν

k), (15.1.5)

for 1
2
≤ ν < 1.

It is proved in [5], that the rate (15.1.5) can be obtained for 0 ≤ ν < 1
2

provided F ′(.)
satifies the following conditions:

F ′(x̄) = R(x̄,x)F ′(x)+Q(x̄,x)

‖I−R(x̄,x)‖ ≤CR x̄,x ∈ B2ρ(x0)

‖Q(x̄,x)‖ ≤CQ‖F ′(x̂)(x̄−x)‖
with ρ,CR and CQ sufficiently small. In fact in [5], Blaschke et.al. obtained the rate

‖xδ
k − x̂‖ = o(α

2ν
2ν+1

k ), 0 ≤ ν <
1

2

by choosing the stopping index kδ according to the discrepancy principle

‖F(xδ
kδ

)−yδ‖ ≤ τδ < ‖F(xδ
k)−yδ‖, 0 ≤ k < kδ

with τ > 1 chosen sufficiently large. Subsequently, many authors extended, modified, and

generalized Bakushinskii’swork to obtain error bounds under various contexts(see [4], [12],

[13], [15], [16], [17], [7]).
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In [20], Mahale and Nair considered a method in which the iterations are defined by

xδ
k+1 = x0 −gαk

(A∗
0A0)A∗

0[F(xδ
k)−yδ −A0(xδ

k −x0)], xδ
0 := x0 (15.1.6)

where A0 := F ′(x0), (αk) is a sequence of regularization parameters which satisfies,

αk > 0, 1 ≤ αk

αk+1

≤ µ1, lim
k→0

αk = 0 (15.1.7)

for some constant µ1 > 1 and each gα, for α > 0 is a positive real-valued piecewise contin-

uous function defined on [0,M] with M ≥ ‖A0‖2. They choose the stopping index kδ for this

iteration as the positive integer which satisfies

max{‖F(xδ
kδ−1)−yδ‖, β̃kδ

} ≤ τδ < max{‖F(xδ
k−1)−yδ‖, β̃k} 1 ≤ k < kδ

where τ > 1 is a sufficiently large constant not depending on δ, and

β̃k := ‖F(xδ
k−1)−yδ +A0(xδ

k −xδ
k−1)‖.

In fact, Mahle and Nair obtained an order optimal error estimate, in the sense that an im-

proved order estimate which is applicable for the case of linear ill-posed problems as well

is not possible, under the following new source condition on x0 − x̂.

Assumption 15.1.1. There exists a continuous, stricly monotonically increasing function

ϕ : (0,M]→ (0,∞) satisfying limλ→0 ϕ(λ) = 0 and ρ0 > 0 such that

x0 − x̂ = [ϕ(A∗
0A0)]

1/2w (15.1.8)

for some w ∈ X with ‖w‖ ≤ ρ0.

In [7], the author considered a particular case of this method, namely, regularized mod-

ified Newton’s method defined iteratively by

xδ
k+1 = xδ

k − (A∗
0A0 +αI)−1[A∗

0(F(xδ
k)−yδ)+α(xδ

k −x0)], xδ
0 := x0 (15.1.9)

for approximately solving (15.1.1). Using a suitably constructed majorizing sequence (see,

[1], page 28), it is proved that the sequence(xδ
k) converges linearly to a solution xδ

α of the

equation

A∗
0F(xδ

α)+α(xδ
α −x0) = A∗

0yδ (15.1.10)

and that xδ
α is an approximation of x̂. The error estimate in this chapter was obtained under

the following source condition on x0 − x̂

Assumption 15.1.2. There exists a continuous, stricly monotonically increasing function

ϕ : (0,a1]→ (0,∞) with a1 ≥ ‖F ′(x̂)‖2 satisfying

1. limλ→0 ϕ(λ) = 0

2. for α ≤ 1,ϕ(α) ≥ α

3. supλ≥0
αϕ(λ)
λ+α

≤ cϕϕ(α), ∀λ ∈ (0,a1]
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4. there exists w ∈ X such that

x0 − x̂ = ϕ(F ′(x̂)∗F ′(x̂))w. (15.1.11)

Later in [8], using a two step Newton method (see, [2]), the author proved that the se-

quence (xδ
k
) in (15.1.9) converges linarly to the solution xδ

α of (15.1.10). The error estimate

in [8] was based on the following source condition

x0 − x̂ = ϕ(A∗
0A0)w,

where ϕ is as in Assumption 15.1.1 with a1 ≥ ‖A0‖2. In the present chapter we improve the

semilocal convergence by modifying the method (15.1.9).

15.1.1. The New Method

In this chapter we define a new iteration procedure

xδ
n+1,α = xδ

n,α−(A∗
0An +αI)−1[A∗

0(F(xδ
n,α)−yδ)+α(xδ

n,α−x0)], xδ
0,α := x0 (15.1.12)

where An := F ′(xδ
n,α) and α > 0 is the regularization parameter. Using an assumption on

the Fréchet derivative of F we prove that the iteration in (15.1.12) converges quadratically

to the solution xδ
α of (15.1.10).

Recall ([22]) that, a sequence (xn) is said to converge quadratically to x∗ if there exists

positive reals β,γ such that

‖xn+1−x∗‖ ≤ βe−γ2n

for all n ∈ N. And the convergence of (xn) to x∗ is said to be linear if there exists a positive

number M0 ∈ (0,1), such that

‖xn+1 −x∗‖ ≤ M0‖xn −x∗‖.

Quadratically convergent sequence will always eventually converge faster than a linear con-

vergent sequence.

We choose the regularization parameter α from some finite set

{α0 < α1 < · · ·< αN}

using the balancing principle considered by Perverzev and Schock in [23].

The rest of this chapter is organized in the following way. In Section 15.2 we provide

the convergence analysis of the proposed method and in Section 15.3 we provide the error

analysis. Finally in Section 15.4 we provide the details for implementing the method and

the algorithm.

15.2. Convergence Analysis of (15.1.12)

The following assumption is used extensively for proving the results in this chapter.
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Assumption 15.2.1. There exists a constant k0 > 0, r > 0 such that for every x,u∈B(x0, r)∪
B(x̂, r)⊂ D(F) and v ∈ X , there exists an element Φ(x,u,v)∈ X such that

[F ′(x)−F ′(u)]v = F ′(u)Φ(x,u,v), ‖Φ(x,u,v)‖≤ k0‖v‖‖x−u‖.

In view of Assumption 15.2.1 there exists an element Φ0(x,x0,v) ∈ X such that

[F ′(x)−F ′(x0)]v = F ′(x0)Φ0(x,x0,v), ‖Φ0(x,x0,v)‖ ≤ l0‖v‖‖x−x0‖.

Note that

l0 ≤ k0

holds in general and k0

l0
can be arbitrarily large [1], [2]. Let δ0 <

√
α0,

ρ <

√
1+2l0(1− δ0√

α0
)−1

l0
,

and

γρ :=
l0

2
ρ2 +ρ +

δ0√
α0

.

For r ≤ 2−3k0

(2+3l0)k0
,k0 ≤ 2

3 let g : (0,1)→ (0,1) be the function defined by

g(t) :=
3(1+ l0r)k0

2(1− l0r)
t ∀t ∈ (0,1).

Lemma 15.2.2. Let l0r < 1 and u ∈ Br(x0). Then (A∗
0Au +αI) is invertible:

(i)

(A∗
0Au +αI)−1 = [I +(A∗

0A0 +αI)−1A∗
0(Au−A0)]

−1(A∗
0A0 +αI)−1

and

(ii)

‖(A∗
0Au +αI)−1A∗

0Au‖ ≤
1+ l0r

1− l0r
,

where Au := F ′(u).

Proof. Note that by Assumption 15.2.1, we have

‖(A∗
0A0 +αI)−1A∗

0(Au −A0)‖ = sup
‖v‖≤1

‖(A∗
0A0 +αI)−1A∗

0(Au−A0)v‖

= sup
‖v‖≤1

‖(A∗
0A0 +αI)−1A∗

0A0Φ0(u,x0,v)‖

≤ l0‖u−x0‖ ≤ l0r < 1.

So I +(A∗
0A0 +αI)−1A∗

0(Au−A0) is invertible. Now (i) follows from the following relation

A∗
0Au +αI = (A∗

0A0 +αI)[I +(A∗
0A0 +αI)−1A∗

0(Au −A0)].
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To prove (ii), observe that by Assumption 15.2.1 and (i), we have

‖(A∗
0Au +αI)−1A∗

0Au‖ = sup
‖v‖≤1

‖(A∗
0Au +αI)−1A∗

0Auv‖

= sup
‖v‖≤1

‖(A∗
0Au +αI)−1A∗

0(Au −A0 +A0)v‖

= sup
‖v‖≤1

‖[I +(A∗
0A0 +αI)−1A∗

0(Au −A0)]
−1

(A∗
0A0 +αI)−1A∗

0(Au −A0 +A0)v‖

≤ 1

1−k0r
[‖(A∗

0A0 +αI)−1A∗
0A0Φ0(u,x0,v)‖

+‖(A∗
0A0 +αI)−1A∗

0A0v‖]

≤ 1+ l0r

1− l0r
.

This completes the proof.

Theorem 15.2.3. Suppose Assumption 15.2.1 holds. Let
γρ

1−g(γρ) ≤ r ≤ 2−3k0

(2+3l0)k0
, δ ∈ (0,δ0].

Then the sequence (xδ
n,α) defined in (15.1.12) is a Cauchy sequence in Br(x0) and hence

converges to xδ
α ∈ Br(x0). Further xδ

α satisfies (15.1.10) and the following estimate holds

for all n ≥ 0 :

‖xδ
n,α −xδ

α‖ ≤ re−γ2n

(15.2.1)

where γ = −ln(g(γρ)).

Proof. Suppose xδ
n,α ∈ Br(x0),∀n ≥ 0. Then

xδ
n+1,α −xδ

n,α = (A∗
0An +αI)−1[A∗

0An(xδ
n,α −xδ

n−1,α) (15.2.2)

−A∗
0(F(xδ

n,α)−F(xδ
n−1,α))]+(A∗

0An +αI)−1A∗
0(An−An−1)

(A∗
0An−1 +αI)−1[A∗

0(F(xδ
n−1,α)−yδ)+α(xδ

n−1,α−x0)]

= (A∗
0An +αI)−1A∗

0[An(xδ
n,α −xδ

n−1,α)− (F(xδ
n,α)−F(xδ

n−1,α))]

+(A∗
0An +αI)−1A∗

0(An −An−1)(xδ
n,α −xδ

n−1,α)

:= ζ1 +ζ2 (15.2.3)

where ζ1 = (A∗
0An +αI)−1A∗

0[An(xδ
n,α −xδ

n−1,α)− (F(xδ
n,α)−F(xδ

n−1,α))] and ζ2 = (A∗
0An +

αI)−1A∗
0(An − An−1)(xδ

n,α − xδ
n−1,α). So by Fundamental Theorem of Integration, ζ1 =

(A∗
0An + αI)−1A∗

0[
R 1

0 (An −F ′(xδ
n−1,α + t(xδ

n,α − xδ
n−1,α)dt](xδ

n,α − xδ
n−1,α) and hence by As-

sumption 15.2.1 and Lemma 15.2.2,

‖ζ1‖ ≤ ‖(A∗
0An +αI)−1A∗

0An

Z 1

0
Φ(xδ

n−1,α + t(xδ
n,α −xδ

n−1,α),xδ
n,α,xδ

n−1,α −xδ
n,α)dt‖

≤ 1+ l0r

1− l0r

Z 1

0
Φ(xδ

n−1,α + t(xδ
n,α −xδ

n−1,α),xδ
n,α,xδ

n−1,α−xδ
n,α)dt‖

≤ (l0r +1)k0

2(1− l0r)
‖xδ

n,α −xδ
n−1,α‖2. (15.2.4)
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Similarly,

‖ζ2‖ ≤ ‖(A∗
0An +αI)−1A∗

0(An−An−1)(xδ
n−1,α−xδ

n,α)‖
≤ ‖(A∗

0An +αI)−1A∗
0AnΦ(xδ

n,α,xδ
n−1,α,xδ

n−1,α−xδ
n,α)‖

≤ (1+ l0r)k0

1− l0r
‖xδ

n,α −xδ
n−1,α‖2. (15.2.5)

So by (15.2.3), (15.2.4)and (15.2.5), we have

‖xδ
n+1,α −xδ

n,α‖ ≤ 3(1+ l0r)k0)

2(1− l0r)
‖xδ

n,α −xδ
n−1,α‖2

≤ g(en)en, (15.2.6)

where

en := ‖xδ
n,α −xδ

n−1,α‖,n = 1,2, · · · .

Now using induction we shall prove that xδ
n,α ∈ Br(x0). Note that

e1 = ‖xδ
1,α −x0‖

= ‖(A∗
0A0 +αI)−1A∗

0(F(x0)−yδ)‖
= ‖(A∗

0A0 +αI)−1A∗
0(F(x0)−F(x̂)−F ′(x0)(x0 − x̂)

+F ′(x0)(x0 − x̂)+F(x̂)−yδ)‖

≤ ‖(A∗
0A0 +αI)−1A∗

0(

Z 1

0
[F ′(x̂ + t(x0 − x̂))−F ′(x0)](x0− x̂)dt

+F ′(x0)(x0 − x̂)+F(x̂)−yδ)‖

≤ ‖(A∗
0A0 +αI)−1A∗

0A0(

Z 1

0
Φ(x0, x̂+ t(x0 − x̂),x0− x̂)‖

+‖(A∗
0A0 +αI)−1A∗

0F ′(x0)(x0 − x̂)‖
+‖(A∗

0A0 +αI)−1A∗
0(F(x̂)−yδ)‖

≤ l0

2
ρ2 +ρ +

δ√
α
≤ γρ ≤ r (15.2.7)

i.e.,xδ
1,α ∈ Br(x0).

Now since γρ < 1, by (15.2.7), e1 < 1. Therefore by (15.2.6) and the fact that g(µt) ≤
µg(t), for all t ∈ (0,1), we have that en < 1,∀n ≥ 1 and

g(e1)
2n−1e1.

Now suppose xδ
k,α ∈ Br(x0) for some k. Then

‖xδ
k+1,α−x0‖ ≤ ‖xδ

k+1,α−xδ
k,α‖+‖xδ

k,α −xδ
k−1,α‖+ · · ·+‖xδ

1,α −x0‖
≤ (g(e1)

2k−1 +g(e1)
2k−1−1 + · · ·+1)e1

≤ e1

1−g(e1)
≤

γρ

1−g(γρ)
≤ r.
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Thus by induction xδ
n,α ∈ Br(x0),∀n ≥ 0.

Next we shall prove that (xδ
k+1,α) is a Cauchy sequence in Br(x0).

‖xδ
n+m,α −xδ

n,α‖ ≤
m

∑
i=0

‖xδ
n+i+1,α −xδ

n+i,α‖ (15.2.8)

≤
m

∑
i=0

g(e1)
2n+i−1e1

≤ g(e1)
2n−1e1(1+g(e1)

2 + · · ·+g(e1)
2m

)

≤ g(e1)
2n−1e1

1−g(e1)
≤

g(γρ)
2n−1γρ

1−g(γρ)
≤ re−γ2n

. (15.2.9)

Thus (xδ
n,α) is a Cauchy sequence in Br(x0) and hence converges, say to xδ

α ∈ Br(x0). Further

by letting n → ∞ in (15.1.12) we obtain

F ′(x0)
∗(F(xδ

α)−yδ)+α(xδ
α −x0) = 0.

The estimate in (15.2.1) follows by letting m tends to ∞ in (15.2.9).

Remark 15.2.4. Note that if r ∈ (r1, r2) where

r1 :=
2+(2l0 −3k0)γρ −

√
(4l2

0 +9k2
0 −36k0l0)γ2

ρ − (12k0 +8l0)γρ +4

2l0(2+3k0γρ)

and

r2 := min{
2+(2l0 −3k0)γρ +

√
(4l2

0 +9k2
0 −36k0l0)γ2

ρ − (12k0 +8l0)γρ +4

2l0(2+3k0γρ)
,

2−3k0

(2+3l0)k0

},

with γρ ≤ cl0k0
:= min{1,

√
(8l0−12k0)2+16(36k0l0−9k0−4l0)−(8l0+12k0)

2(36k0l0−9k2
0−4l2

0)
} then

γρ

1−g(γρ)
≤ r and

l0r < 1.

15.3. Error Analysis

We use the following assumption to obtain an error estimate for ‖xδ
α − x̂‖.

Assumption 15.3.1. There exists a continuous, strictly monotonically increasing function

ϕ : (0,a]→ (0,∞) with a ≥ ‖F ′(x0)‖2 satisfying;

• lim
λ→0 ϕ(λ) = 0

•
sup

λ ≥ 0

αϕ(λ)

λ+α
≤ ϕ(α), ∀λ ∈ (0,a].

• there exists v ∈ X such that

x0 − x̂ = ϕ(A∗
0A0)v.
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Theorem 15.3.2. Let xδ
α be as in (15.1.10). Then

‖xδ
α − x̂‖ ≤ max{1,‖v‖}

1−q
(

δ√
α

+ϕ(α))

where q = l0r.

Proof. Let M =
R 1

0 F ′(x̂+ t(xδ
α − x̂))dt. Then

F(xδ
α)−F(x̂) = M(xδ

α − x̂)

and hence by (15.1.10), we have (A∗
0M +αI)(xδ

α − x̂) = A∗
0(yδ−y)+α(x0 − x̂). Thus

xδ
α − x̂ = (A∗

0A0 +αI)−1[A∗
0(yδ−y)+α(x0 − x̂)+A∗

0(A0 −M)(xδ
α − x̂)]

= s1 + s2 + s3 (15.3.1)

where s1 := (A∗
0A0 + αI)−1A∗

0(yδ − y), s2 := (A∗
0A0 + αI)−1α(x0 − x̂) and s3 := (A∗

0A0 +

αI)−1A∗
0(A0−M)(xδ

α − x̂). Note that

‖s1‖ ≤
δ√
α

, (15.3.2)

by Assumption 15.3.1

‖s2‖ ≤ ϕ(α)‖v‖ (15.3.3)

and by Assumption 15.2.1

‖s3‖ ≤ l0r‖xδ
α − x̂‖. (15.3.4)

The result now follows from (15.3.1), (15.3.2), (15.3.3) and (15.3.4).

15.3.1. Error Bounds under Source Conditions

Combining the estimates in Theorem 15.2.3 and Theorem 15.3.2 we obtain the following.

Theorem 15.3.3. Let the assumptions in Theorem 15.2.3 and Theorem 15.3.2 hold and let

xδ
n,α be as in (15.1.12). Then

‖xδ
n,α − x̂‖ ≤ re−γ2n

+
max{1,‖v‖}

1−q
(

δ√
α

+ϕ(α)).

Further if nδ := min{n : e−γ2n

< δ√
α
}, then

‖xδ
nδ,α

− x̂‖ ≤ C̃(
δ√
α

+ϕ(α))

where C̃ := r +
max{1,‖v‖}

1−q
.
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15.3.2. A Priori Choice of the Parameter

Observe that the estimate δ√
α

+ ϕ(α) in Theorem 15.3.3 is of optimal order for the choice

α := αδ which satisfies δ√
αδ

= ϕ(α). Now, using the function ψ(λ) := λ
√

ϕ−1(λ),0 < λ≤ a,

we have δ =
√

αϕ(α) = ψ(ϕ(α)) so that αδ = ϕ−1[ψ−1(δ)].

Theorem 15.3.4. Let ψ(λ) = λ
√

ϕ−1(λ),0 < λ ≤ a and assumptions in Theorem 15.3.3

holds. For δ > 0, let αδ = ϕ−1[ψ−1(δ)] and let nδ be as in Theorem 15.3.3. Then

‖xδ
nδ,α

− x̂‖ = O(ψ−1(δ)).

15.3.3. Adaptive Choice of the Parameter

In the balancing principle considered by Pereverzev and Schock in [23], the regularization

parameter α = αi are selected from some finite set

DN := {αi : 0 < α0 < α1 < · · ·< αN}.

Let

ni = min{n : e−γ2n ≤ δ√
αi

}

and let xδ
αi

:= xδ
ni,αi

where xδ
ni,αi

be as in (15.1.12) with α = αi and n = ni. Then from

Theorem 15.3.3, we have

‖xδ
αi
− x̂‖ ≤ C̃(

δ√
αi

+ϕ(αi)),∀i = 1,2, · · ·N.

Precisely we choose the regularization parameter α = αk from the set DN defined by

DN := {αi = µiα0, i = 1,2, · · ·N}

where µ > 1.
To obtain a conclusion from this parameter choice we considered all possible functions

ϕ satisfying Assumption 15.2.1 and ϕ(αi)≤ δ√
αi

. Any of such functions is called admissible

for x̂ and it can be used as a measure for the convergence of xδ
α → x̂ (see [19]).

The main result of this section is the following theorem, proof of which is analogous to

the proof of Theorem 4.4 in [7].

Theorem 15.3.5. Assume that there exists i ∈ {0,1, · · · ,N} such that ϕ(αi) ≤ δ√
αi

. Let

assumptions of Theorem 15.3.3 be satisfied and let

l := max{i : ϕ(αi) ≤
δ√
αi

} < N,

k = max{i : ∀ j = 1,2, · · · , i;‖xδ
αi
−xδ

α j
‖ ≤ 4C̃

δ
√

α j

}

where C̃ is as in Theorem 15.3.3. Then l ≤ k and

‖xδ
αk
− x̂‖ ≤ 6C̃µψ−1(δ).
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15.4. Implementation of the Method

Finally the balancing algorithm associated with the choice of the parameter specified in

Theorem 15.3.5 involves the following steps:

• Choose α0 > 0 such that δ0 < ck0l0

√
α0 and µ > 1.

• Choose N big enough but not too large and αi := µiα0, i = 0,1,2, · · · ,N.

• Choose ρ ≤

√
1+2l0(ck0l0

− δ0√
α0

)−1

l0
where ck0l0 is as in Remark 15.2.4.

• Choose r ∈ (r1, r2).

15.4.1. Algorithm

1. Set i = 0.

2. Choose ni = min{n : e−γ2n ≤ δ√
αi
}.

3. Solve xδ
ni,αi

= xδ
αi

by using the iteration (15.1.12) with n = ni and α = αi.

4. If ‖xδ
αi
−xδ

α j
‖ > 4C̃ δ√

α j
, j < i, then take k = i−1 and return xδ

αk
.

5. Else set i = i+1 and return to Step 2.
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Chapter 16

Local Convergence Analysis of

Proximal Gauss-Newton Method for

Penalized Nonlinear Least Squares

Problems

16.1. Introduction

Let X and Y be Hilbert spaces. Let D ⊆ X be open set and F : D −→ Y be continuously

Fréchet-differentiable. Moreover, let J : D → R∪{∞} be proper, convex and lower semi-

continuous. In this study we are concerned with the problem of approximating a locally

unique solution x? of the penalized nonlinear least squares problem

min
x∈D

‖ F(x) ‖2 +J(x). (16.1.1)

A solution x? ∈D of (16.1.1) is also called a least squares solution of the equation F(x) = 0.

Many problems from computational sciences and other disciplines can be brought in a

form similar to equation (16.1.1) using Mathematical Modelling [3, 6, 14, 16]. For example

in data fitting, we have X = R
i, Y = R

j, i is the number of parameters and j is the number

of observations.

The solution of (16.1.1) can rarely be found in closed form. That is why the solution

methods for these equations are usually iterative. In particular, the practice of numeri-

cal analysis for finding such solutions is essentially connected to Newton-type methods

[1, 2, 3, 5, 4, 6, 7, 14, 17]. The study about convergence matter of iterative procedures

is usually centered on two types: semilocal and local convergence analysis. The semilo-

cal convergence matter is, based on the information around an initial point, to give criteria

ensuring the convergence of iterative procedures; while the local one is, based on the in-

formation around a solution, to find estimates of the radii of convergence balls. A plethora

of sufficient conditions for the local as well as the semilocal convergence of Newton-type

methods as well as an error analysis for such methods can be found in [1]–[20].

If J = 0, we obtain the well known Gauss-Newton method defined by

xn+1 = xn −F ′(xn)
+F(xn), for each n = 0,1,2, . . ., (16.1.2)
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where x0 ∈ D is an initial point [12] and F ′(xn)
+ is the Moore-Penrose inverse of the linear

operator F ′(xn). In the present paper we use the proximal Gauss-Newton method (to be pre-

cised in Section 16.2, see (16.2.6)) for solving penalized nonlinear least squares problem

(16.1.1). Notice that if J = 0, x? is a solution of (16.1.1), F(x?) = 0 and F ′(x?) is invertible,

then the theories of Gauss-Newton methods merge into those of Newton method. A sur-

vey of convergence results under various Lipschitz-type conditions for Gauss-Newton-type

methods can be found in [2, 6] (see also [5, 9, 10, 12, 15, 18]). The convergence of these

methods requires among other hypotheses that F ′ satisfies a Lipschitz condition or F ′′ is

bounded in D. Several authors have relaxed these hypotheses [4, 8, 9, 10, 15]. In particular,

Ferreira et al. [1, 9, 10] have used the majorant condition in the local as well as semilocal

convergence of Newton-type method. Argyros and Hilout [3, 4, 5, 6, 7] have also used

the majorant condition to provide a tighter convergence analysis and weaker convergence

criteria for Newton-type method. The local convergence of inexact Gauss-Newton method

was examined by Ferreira et al. [9] using the majorant condition. It was shown that this

condition is better that Wang’s condition [15], [20] in some sence. A certain relationship

between the majorant function and operator F was established that unifies two previously

unrelated results pertaining to inexact Gauss-Newton methods, which are the result for an-

alytical functions and the one for operators with Lipschitz derivative.

In [7] motivated by the elegant work in [10] and optimization considerations we pre-

sented a new local convergence analysis for inexact Gauss-Newton-like methods by using

a majorant and center majorant function (which is a special case of the majorant function)

instead of just a majorant function with the following advantages: larger radius of con-

vergence; tighter error estimates on the distances ‖ xn − x? ‖ for each n = 0,1, · · · and a

clearer relationship between the majorant function and the associated least squares prob-

lems (16.1.1). Moreover, these advantages are obtained under the same computational cost,

since as we will see in Section 16.3. and Section 16.4., the computation of the majorant

function requires the computation of the center-majorant function. Furthermore, these ad-

vantages are very important in computational mathematics, since we have a wider choice

of initial guesses x0 and fewer computations to obtain a desired error tolerance on the dis-

tances ‖ xn−x? ‖ for each n = 0,1, · · ·. In the present paper, we obtain the same advantages

over the work by Allende and Gonçalves [1] but using the proximal Gauss-Newton method

[6, 18].

The paper is organized as follows. In order to make the paper as self contained as

possible, we provide the necessary background in Section 16.2.. Section 16.3. contains

the local convergence analysis of inexact Gauss-Newton-like methods. Some proofs are

abbreviated to avoid repetitions with the corresponding ones in [18]. Special cases and

applications are given in the concluding Section 16.4..

16.2. Background

Let U(x, r) and U(x, r) stand, respectively, for the open and closed ball in X with center

x ∈ D and radius r > 0. Let A : X −→ Y be continuous linear and injective with closed

image, the Moore-Penrose inverse [3] A+ : Y −→ X is defined by A+ = (A? A)−1A?. I
denotes the identity operator on X (or Y ). Let L(X ,Y ) be the space of bounded linear

operators from X into Y . Let M ∈ L(X ,Y ), the Ker(M) and Im(M) denote the Kernel
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and image of M, respectively and M∗ its adjoint operator. Let M ∈ L(X ,Y ) with a closed

image. Recall that the Moore-Pentose inverse of M is the linear operator M+ ∈ L(Y ,X )
which satisfies

M M+ M = M, M+ M M+ = M, (M M+)∗ = M M+, (M+ M)∗ = M+ M. (16.2.1)

It follows from (16.2.1) that if ∏S denotes the projection of X onto subspace S, then

M+ M = IX − ∏
Ker(M)

, M M+ = ∏
Im(M)

. (16.2.2)

Moreover, if M is injective, then

M+ = (M∗M)−1 M∗, M+ M = IX , ‖M+‖2 = ‖(M∗M)−1‖. (16.2.3)

Lemma 16.2.1. [3, 6, 14] (Banach’s Lemma) Let A : X −→ X be a continuous linear

operator. If ‖ A−I ‖< 1 then A−1 ∈ L(X ,X ) and ‖ A−1 ‖≤ 1/(1−‖ A−I ‖).

Lemma 16.2.2. [1, 3, 6, 10] Let A,E : X −→ Y be two continuous linear operators with

closed images. Suppose B = A+E, A is injective and ‖ E A+ ‖< 1. Then, B is injective.

Lemma 16.2.3. [1, 3, 6, 10] Let A,E : X −→ Y be two continuous linear operators with

closed images. Suppose B = A+E and ‖ A+ ‖‖E ‖< 1. Then, the following estimates hold

‖ B+ ‖≤ ‖ A+ ‖
1− ‖ A+ ‖‖ E ‖ and ‖ B+−A+ ‖≤

√
2 ‖ A+ ‖2 ‖ E ‖

1− ‖ A+ ‖‖ E ‖ .

The semilocal convergence of proximal Gauss-Newton method using Wang’s condition

was introduced in [18]. Next, in order to make the paper as self contained, as possible, we

briefly illustrate how this method is defined. Let Q : X → X be continuous, positive, self

adjoint and bounded from below. It follows that Q−1 ∈ L(X ,X ). Define a scalar product

on X by < u,v >=< u,Qv >. Then, the corresponding induced norm ‖ . ‖Q is equivalent to

the given norm on X , since 1
‖Q−1‖ ‖ x ‖≤‖ x ‖2

Q≤‖ Q ‖‖ x ‖2. The Moreau approximation of

J [18] with respect to the scalar product induced by Q in the functional Γ : X → R defined

by

Γ(y) = inf
x∈X

{
J(x)+

1

2
‖ x−y ‖2

Q

}
(16.2.4)

It follows from the properties of J that the infimum in (16.2.4) is obtained at a unique

point. Let us denote by prox
Q
J (y) the proximity operator:

prox
Q
J : X → X

y → Γ(y) = argminx∈X

{
J(x)+

1

2
‖ x−y ‖2

Q

}
(16.2.5)

The first optimality condition for (16.2.4) leads to

z = prox
Q
J (y) ⇔ 0 ∈ ∂J(z)+Q(z−y)

⇔ Q(z) ∈ (∂I +Q)(z),
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which leads to

prox
Q
J (y) = (∂I +Q)−1(Q(y))

by using the minimum in (16.2.4). In view, of the above, we can define the proximal Gauss-

Newton method by

xn+1 = prox
H(xn)
J (xn −F ′(xn)

+F(xn)) for each n = 0,1,2, . . . (16.2.6)

where x0 is an initial point, H(xn) = F ′(xn)
∗F ′(xn) and prox

H(xn)
J is defined in (16.2.5).

Next, we present some auxiliary results.

Lemma 16.2.4. [18] Let Q1 and Q2 be continuous, positive self adjoint operators and

bounded from below on X. Then, the following hold

‖ prox
Q1

J (y1)−prox
Q2

J (y2) ‖ ≤
√
‖ Q1 ‖‖ Q−1

1 ‖ ‖ y1 −y2 ‖

+ ‖ Q−1
1 ‖‖ (Q1 −Q2)(y2−prox

Q2

J (y2)) ‖ .
(16.2.7)

for each y1, y2 ∈ X.

Lemma 16.2.5. [18] Given xn ∈ X, if F ′(xn) is injective with closed image, then xn+1

satisfies

xn+1 = argminx∈X

1

2
‖ F(xn)+F ′(xn)(x−xn) ‖2 +J(x). (16.2.8)

Lemma 16.2.6. [18] Suppose: x∗ ∈D satisfies−F ′(x∗)∗F(x∗)∈ ∂J(x∗); F ′(x∗) is injective

and Im(F ′(x∗)) is closed. Then x∗ satisfies

x∗ = prox
H(x∗)
J

(
x∗−F ′(xn)

+F(x∗)
)
. (16.2.9)

Proposition 16.2.7. [10] Let R > 0. Suppose g : [0,R)−→R is convex. Then, the following

holds

D+g(0) = lim
u→0+

g(u)−g(0)

u
= inf

u>0

g(u)−g(0)

u
.

Proposition 16.2.8. [10] Let R > 0 and θ∈ [0,1]. Suppose g : [0,R)−→R is convex. Then,

h : (0,R)−→ R defined by h(t) = (g(t)−g(θt))/t is increasing.

16.3. Local Convergence Analysis of the Proximal Gauss-

Newton Method

We shall prove the main local convergence results for the proximal Gauss-Newton method

(16.2.6) for solving the penalized nonlinear least squares problem (16.1.1) under the (H)
conditions given as follows:

(H0) Let D⊆ X be open; J : D→R∪{+∞} be proper, convex and lower semicontinuously

Fréchet-differentiable such that F ′ has a closed image in D;
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(H1) Let x∗ ∈ D, R > 0, α :=‖F(x∗) ‖, β :=‖ F ′(x∗)+ ‖, γ := β ‖ F ′(x∗) ‖ and δ := sup{t ∈
[0,R) : U(x∗, t)⊂ D}. Operator −F ′(x∗)∗F(x∗) ∈ ∂J(x∗), F ′(x) is injective and there

exist f0, f : [0,R) → R continuously differentiable such that for each x ∈ U(x∗,δ),

θ ∈ [0,1] and λ(x) =‖ x−x∗ ‖:

β ‖ F ′(x)−F ′(x∗) ‖≤ f ′0(λ(x))− f ′0(0) (16.3.1)

and

β ‖ F ′(x)−F ′(x∗ +θ(x−x∗)) ‖≤ f ′0(λ(x))− f ′0(θλ(x)); (16.3.2)

(H2) f0(0) = f (0) = 0 and f ′0(0) = f ′(0) = −1;

(H3) f ′0, f ′ are strictly increasing and for each t ∈ [0,R)

f0(t)≤ f (t) and f ′0(t)≤ f ′(t);

(H4)
[(

1+
√

2
)

γ+1
]

αβD+ f ′0(0) < 1;

Let positive constants ν, ρ, r and function Ψ be defined by

ν := sup
{

t ∈ [0,R) : f ′0(t) < 0
}

,

ρ := sup{t ∈ [0,ν) : Ψ(t) < 1} ,

r := min{ν, ρ}
and

Ψ(t) :=
( f ′0(t)+1+ γ)

[
t f ′(t)− f (t)+αβ

(
1+

√
2
)

( f ′0(t)+1)
]
+αβ( f ′0(t)+1)

t
[

f ′0(t)
]2 .

Remark 16.3.1. In the literature, with the exception of our works [2, 3, 4, 5, 6, 7] only

(16.3.2) is used. However, notice that (16.3.2) always implies (16.3.1). That is (16.3.1) is

not an additional to (16.3.2) hypothesis. Moreover,

f ′0(t)≤ f ′(t) for each t ∈ [0,R) (16.3.3)

holds in general and
f ′(t)
f ′0(t)

can be arbitrarily large [3, 6]. Using more precise (16.3.1)

instead of (16.3.2) for the computation of the upper bounds on the norms ‖ F ′(x)+ ‖ and

‖ F ′(x)+−F ′(x∗)+ ‖ leads to a tighter error estimates on ‖ xn−x∗ ‖ and a larger radius of

convergence (if f ′0(t) < f ′(t)) that if only (16.3.2) was used (see also Remark 3.11, the last

Section and the numerical example).

Theorem 16.3.2. Under the (H) hypotheses, let x0 ∈U(x∗, r)\{x∗}. Then, sequence {xn}
generated by proximal Gauss-Newton method (16.2.6) for solving penalized nonlinear least

squares problem (16.1.1) is well defined, remains in U(x∗, r) and converges to x∗. Moreover,

the following estimates hold for each n = 0,1,2, . . .:

λn+1 = λ(xn+1) ≤ ϕn+1 := ϕ(λ0,λn, f , f ′, f ′0), (16.3.4)
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where

ϕ(λ0,λn, f , f ′, f ′0) =
( f ′0(λ0)+1+ γ)[ f ′(λ0)λ0 − f (λ0)]

(λ0 f ′0(λ0))2
λ2

n

+

(
1+

√
2
)

αβ( f ′0(λ0)+1)2

(λ0 f ′0(λ0))2
λ2

n

+
αβ
[(

1+
√

2
)

γ+1
]
[ f ′0(λ0)+1]

λ0( f ′0(λ0))2
λn.

In order for us to prove Theorem 16.3.2 we shall need several auxiliarity results. The

proofs of the next four Lemmas are omitted, since they have been given, respectively in

Lemmas 16.3.1-16.3.4 in [7]. From now on we assume that hypotheses (H) are satisfied.

Lemma 16.3.3. The following hold, ν > 0, and f ′0(t) < 0 for each t ∈ [0,ν).

Lemma 16.3.4. The function gi, i = 1,2, . . .,7 defined by

g1(t) = − 1

f ′0(t)
,

g2(t) = − f ′0(t)+1+ γ

f ′0(t)
,

g3(t) =
t f ′(t)− f (t)

t2
,

g4(t) =
f ′0(t)+1

t
,

g5(t) =
( f ′0(t)+1+ γ)(t f ′(t)− f (t))

(t f ′0(t))
2

,

g6(t) =
( f ′0(t)+1)2

(t f ′0(t))
2

and

g7(t) =
f ′0(t)+1

t( f ′0(t))
2

for each t ∈ [0,ν) are positive and increasing.

Lemma 16.3.5. The following hold, ρ > 0, and 0 ≤ ψ(t) < 1 for each t ∈ [0,ρ), where

function ψ is defined in the (H) hypotheses.

Lemma 16.3.6. Let x ∈ D. Suppose that λ(x) < min{ν,ρ} and the (H) hypotheses hold

excluding (16.3.2). Then, the following items hold:

‖ F ′(x)+ ‖≤− β

f ′0(λ(x))
,

‖ F ′(x)+−F ′(x∗)+ ‖≤−
√

2β( f ′0(λ(x))+1)

f ′0(λ(x))

and

H(x) = F ′(x∗)F ′(x) is invertible on U(x∗, r).
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Remark 16.3.7. It is worth noticing (see also Remark 16.3.2 that the estimates in Lemma

16.3.6 hold with f0 replaced by f (i.e. using (16.3.2) instead of (16.3.1)). However, in this

case these estimates are less tight.

Lemma 16.3.8. Let x ∈ D. Suppose that λ(x) < min{ν,δ} and the (H) hypotheses exclud-

ing (16.3.2) hold. Then, the following items hold for each x ∈ D:

(a) ‖ H(x) ‖ 1
2≤ f ′0(λ(x))+1+γ

β ;

(b) ‖ H(x)−1 ‖ 1
2≤ − β

f ′0(λ(x))

and

(c) β ‖ (H(x)−H(x∗))F ′(x∗)+ ‖≤ ( f ′0(λ(x))+2+ γ)( f ′0(λ(x))+1).

Proof.

(a) It follows from (16.3.1) that

β ‖ F ′(x) ‖ = ‖ F ′(x∗)+ ‖‖ F ′(x) ‖

≤ β(‖ F ′(x)−F ′(x∗) ‖ + ‖ F ′(x∗) ‖)

≤ f ′0(λ(x))+1+ γ.

Then (a) follows from the preceding estimate and

‖ H(x) ‖ 1
2 = F ′(x) ‖ 1

2 =‖ F ′(x) ‖ .

(b) Use Lemma 16.3.6, the definition of H and the last property in (16.2.3).

(c) We use (16.2.2) , (b) and (16.3.1) to obtain in turn that

β ‖ (H(x)−H(x∗))F ′(x∗)+ ‖ = β ‖ F ′(x)∗(F ′(x)−F ′(x∗))F ′(x∗)+

+(F ′(x)−F ′(x∗))∗ ∏Im(F ′(x∗)) ‖

≤ (‖ F ′(x) ‖‖ F ′(x∗)+ ‖ +1)β ‖ F ′(x)−F ′(x∗) ‖)

≤ ( f ′0(λ(x))+2 + γ)( f ′0(λ(x))+1).

The proof of the Lemma is complete. �

As in [1, 7, 10, 18] we define the linearization error at a point in D by

EF(x,y) := F(y)− [F(x)+F ′(x)(y−x)] for each x,y ∈ D.

Then using (16.3.2) we bound this error by majorant function

e f (t,u) = f (u)− [ f (t)+ f ′(t)(u− t)] for each t,u ∈ [0,R).

In particular we have (see Lemma 16.3.5 in [7] for the proof).
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Lemma 16.3.9. Let x ∈ D. Suppose that λ(x) < δ, then the following items hold:

β ‖ EF(x,x∗) ‖≤ e f (λ(x),0).

Remark 16.3.10. (a) Using (16.3.2) only according to Lemma 16.3.9 we have that

β ‖ E(x,x∗) ‖≤ e f0
(λ(x),0)+2( f0(λ(x))+λ(x)).

(b) Let us denote by G the proximal Gauss-Newton iteration operator by

G : U(x∗, r) → X

x → prox
H(x)
J (G(x)),

where

G(x) = x−F ′(x)+F(x).

Notice that according to Lemma 16.3.8 H(x) is invertible in U(x∗, r). Hence, F ′(x)+

and prox
H(x)
J are well defined in U(x∗, r).

Next, we provide the proof of the Theorem 16.3.2.

Proof. Let x ∈ D. Suppose that λ(x) < r. Then, we shall first show that operator G is well

defined and

‖ G(x)−x∗ ‖≤ ϕ(λ(x),λ(x), f , f ′, f ′0), (16.3.5)

where function ϕ was defined in Theorem 16.3.2. Using Lemma 16.2.6 as −F ′(x∗)∗F(x∗)∈
∂J(x∗) and F ′(x) is injective we have that x∗ = prox

H(x)
J (GF(x∗)). Then, according to

Lemma 2.4 we have in turn that

‖ G(x)−x∗ ‖ = ‖ prox
H(x)
J (GF(x)−prox

H(x∗)
J (GF(x∗)))

≤ (‖ H(x) ‖‖ H(x)−1 ‖) 1
2 ‖ G(x)−G(x∗) ‖

+ ‖ H(x)−1 ‖‖ (H(x)−H(x∗))(G(x∗)−prox
H(x∗)
J (G(x∗))) ‖

≤ P1(x,x∗)+P2(x,x∗),
(16.3.6)

where for simplicity we set

P1(x,x∗) = (‖ H(x) ‖‖ H(x)−1 ‖) 1
2 ‖ G(x)−G(x∗) ‖

and

P2(x,x∗) =‖ H(x)−1 ‖‖ (H(x)−H(x∗))F ′(x∗)+ ‖‖ F(x∗) ‖ .

Using the definition of P2 and items (b) and (c) of Lemma 16.3.8 we get that

P2(x,x∗)≤ αβ

( f ′0(λ(x)))2
( f ′0(λ(x))+2+ γ)( f ′0(λ(x))+1). (16.3.7)
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Then, to find an upper bound on P2, we first need to find an upper bound on ‖G(x)−G(x∗) ‖.
Indeed, we have in turn that

‖ G(x)−G(x∗) ‖ = ‖ F ′(x)+ [F ′(x)(x− x∗)−F(x)+F(x∗)]+(F ′(x∗)+ −F ′(x)+)F(x∗) ‖

≤ ‖ F ′(x)+ ‖‖ EF (x,x∗) ‖ + ‖ F ′(x∗)+ −F ′(x)+ ‖‖ F(x∗) ‖

≤ −e f (λ(x),0)

f ′0(λ(x))
−

√
2αβ( f ′0(λ(x))+1)

f ′0(λ(x))

≤ f ′0(λ(x))+1 + γ

f ′0(λ(x))2

(
e f (λ(x),0)+

√
2αβ( f ′0(λ(x))+1)

)
,

(16.3.8)

where we used Lemma 16.3.6, Lemma 16.3.8 (a) and (b) and Lemma 16.3.9. Then,

(16.3.5) follows from (16.3.6) by summing up (16.3.7) we have that

‖ G(x)−x∗ ‖≤ q(x)λ(x), (16.3.9)

where

q(x) =
( f ′0(λ(x))+1+ γ)

[
λ(x) f ′(λ(x))− f (λ(x))+αβ

(
1+

√
2
)

( f ′0(λ(x))+1)
]

λ(x) [ f0(λ(x))]2

+
+αβ( f ′0(λ(x))+1)

λ(x) [ f0(λ(x))]2
.

But q(x)∈ [0,1), by Lemma 16.3.5, since x ∈U(x∗, r)\{x∗}, so that 0 < λ(x) < r < ρ. That

is we have

‖ G(x)−x∗ ‖<‖ x−x∗ ‖ . (16.3.10)

In particular x0 ∈ U(x∗, r) \ {x∗}. That is 0 < λ(x0) < r. Then, using mathematical

induction, Lemma 16.3.6 and (16.3.10) for x = x0 we get that λ(x1) =‖ x1 − x∗ ‖<‖ x0 −
x∗ ‖= λ(x0) < r. Similarly, we get as in (16.3.9) that

‖ xk+1−x∗ ‖ ≤ q(x0) ‖ xk −x∗ ‖

< ‖ xk −x∗ ‖

< r

from which it follows that lim
k→∞

xk = x∗ and sequence {xk} remains in U(x∗, r)\{x∗}. �

Remark 16.3.11. If f0 = f , then the results of this Section reduce to the corresponding

ones in [1] (see also [9]). Otherwise, i.e. if strict inequality holds in (16.3.3), then: our

sufficient convergence condition (H4) is weaker than the one in [1] using f ′ instead of f ′0
(i.e. the applicability of the method is extended in cases that cannot be covered before);

our convergence ball is larger and the estimates on the distances ‖xn − x∗‖ more precise,

which imply that we have a wider choice of the initial guesses and less iterates are required

to obtain a given error tolerance. Notice also that these advantages are obtained under the

same computational cost as in [1, 9], since in practice the computation of the function f

requires the computation of f0 as a special case. Therefore, these developments are very

important in computational mathematics.
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16.4. Special Cases and Numerical Examples

We present a special case of Theorem 16.3.2. This case is based on the center-Lipschitz and

Lipschitz conditions [2, 3, 4, 5, 7]. We refer the reader to [3, 6] for another case based on

Smale’s alpha theory [19].

Remark 16.4.1. Let us define functions f0, f : [0,γ] → R by

f0(t) =
L0

2
t2 − t and f (t) =

L

2
t2− t, (16.4.1)

where 0 < L0 < L are the center-Lipschitz and Lipschitz constants, respectively. We have

that f0(0) = f (0) = 0 and f ′0(0) = f ′(0) = −1. Notice that (16.3.3) holds as a strict in-

equality in this case. Then, one can specialize Theorem 16.3.2 using the above choices.

Clearly, the results improve the corresponding ones (with advantages as already stated in

the introduction of this study and in Remark 16.3.11) using only (16.2.2) (i.e. if f0 = f ).

Since such results as far as we know are not available, let us at least consider the case

α = 0. That is we consider the case of zero-residual problems. Then, Theorem 16.3.2

specializes to:

Corollary 16.4.2. Let D ⊆X be open, J : D →R∪{+∞} be proper, convex and lower semi-

continuous and F : D → Y be continuously Fréchet-differentiable and F ′ be with closed

image in D. Let x∗ ∈ D, R > 0, β =‖ F ′(x∗)+ ‖, γ = β ‖ F ′(x∗) ‖ and δ = sup{t ∈ [0,R) :

U(x∗, t) ⊂ D}. Suppose that F(x∗) = 0, 0 ∈ ∂J(x∗), F ′(x∗) is injective and there exists L0

and L such that for each x ∈U(x∗,δ), θ ∈ [0,1]:

β ‖ F ′(x)−F ′(x∗) ‖≤ L0 ‖ x−x∗ ‖

and

β ‖ F ′(x)−F ′(x∗ +θ(x−x∗)) ‖≤ L(1−θ) ‖ x−x∗ ‖ .

Let

r := min

{
4+ γ−

√
(4+ γ)2−8

2L0

,δ

}
.

Then, sequence {xn} generated by proximal Gauss-Newton method (16.2.6) for solving

penalized nonlinear least squares problem (16.1.1) is well defined, remains in U(x∗, r) and

converges to x∗ provided that x0 ∈ U(x∗, r)\{x∗}. Moreover, the following estimates hold

‖ xk+1 −x∗ ‖≤ L(γ +2L0 ‖ x0 −x∗ ‖)
2(1−L0 ‖ x0 −x∗ ‖) ‖ xn −x∗ ‖2 for each n = 0,1,2, . . ..

The preceding results improve earlier ones [1, 8, 9, 10, 12, 15, 18] when L0 < L (see

also Remark 16.3.11). Next, we present an example where L0 < L. More example, where

L0 < L in the Lipschitz case or in Smale’s alpha theory can be found in [3, 4, 5, 6, 7].

Example 16.4.3. Let X = Y = R
3, D = U(0,1), x∗ = (0,0,0) and define function F on D

by

F(x,y, z) = (ex −1,
e−1

2
y2 +y, z). (16.4.2)
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For simplicity we consider the nonlinear equation F(x) = 0 instead of (16.1.1). We have

that for u = (x,y, z)

F ′(u) =




ex 0 0

0 (e−1)y+1 0

0 0 1


 , (16.4.3)

Using the norm of the maximum of the rows and (16.4.2)–(16.4.3) we see that since F ′(x∗) =

diag{1,1,1}, we can define parameters L0 and L by

L0 = e−1 < L = e.
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Chapter 17

On the Convergence of a Damped

Newton Method with Modified

Right-Hand Side Vector

17.1. Introduction

In this chapter we are concerned with the problem of approximating a locally unique solu-

tion x∗ of the nonlinear equation

F(x) = 0, (17.1.1)

where F is a Fréchet-differentiable operator defined on a open convex subset D of a Banach

space X with values in a Banach space Y.

Many problems from Computational Sciences and other disciplines can be brought in a

form similar to equation (17.1.1) using Mathematical Modeling [2, 6, 10]. For example in

data fitting, we have X = Y = Ri, i is number of parameters and i is number of observations.

The solution of (17.1.1) can rarely be found in closed form. That is why the solution

methods for these equations are usually iterative. In particular, the practice of Numerical

Analysis for finding such solutions is essentially connected to Newton-type methods [1]–

[15]. The study about convergence matter of iterative procedures is usually centered on

two types: semilocal and local convergence analysis. The semilocal convergence matter is,

based on the information around an initial point, to give criteria ensuring the convergence

of iteration procedures; while the local one is, based on the information around a solution,

to find estimates of the radii of the convergence balls.

In the present chapter, we study the convergence of the Damped Newton method defined

by

xn+1 = xn −A−1
(
I −αn

(
F ′(xn)−A

))
F(xn), for each n = 0,1,2, . . ., (17.1.2)

where A ∈ L(X,Y) the space of bounded linear operators from X into Y, A−1 ∈ L(Y,X),

αn is a sequence of real numbers chosen to force convergence of sequence xn and x0 is

an initial point. If A = F ′(x0) and αn = 0 for each n = 0,1,2, . . ., we obtain the modified

Newton’s method

yn+1 = yn −F ′(x0)
−1F(yn), y0 = x0, for each n = 0,1,2, . . ., (17.1.3)
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which converges linearly [2, 10].

The local convergence of Newton-like method (17.1.2) was studied by Krejić and

Lužanin [13] (see also [11]) in the case when X = Y = R
i.

Newton’s method

zn+1 = zn −F ′(zn)F(zn), for each n = 0,1,2, . . ., (17.1.4)

converges quadratically provided that the iteration starts close enough to the solution. How-

ever, the cost of a Newton iterate may be very expensive, since all the elements of the Ja-

cobian matrix involved must be computed, as well as the need for an exact slowdown of a

system of linear equations using a new matrix for every iterate. As noted in [13] Newton-

like method (17.1.2) uses a modification of the right hand side vector, which is cheaper than

the Newton and faster than the modified Newton method. One step of the method requires

the solution of a linear system, but the system matrix is the same in all iterations.

We present a new local and semilocal convergence analysis for Newton-like method.

In contrast to the work in [11, 13], in the local case the radius of convergence can be

computed as well as the error bounds on the distances ‖xn −x∗‖ for each n = 0,1,2, . . .. In

the semilocal case, we present estimates on the smallness of ‖F(x0)‖ as well as computable

estimates for ‖xn − x∗‖ (not given in [11, 13] in terms of the Lipschitz constants and other

initial data).

We denote by U(ν,µ) the open ball centered at ν ∈ X and of radius µ > 0. Moreover,

by U(ν,µ) we denote the closure of U(ν,µ).

The chapter is organized as follows. Sections 17.2. and 17.3. contain the semilocal and

local convergence analysis of Newton-like method (17.1.2), respectively. The numerical

examples are presented in the concluding Section 17.4..

17.2. Semilocal Convergence

In this section we present the semilocal convergence of Damped Newton method (17.1.2).

We shall use the following conditions:

C0 F : D⊆X →Y is Fréchet-differentiable and there exists A ∈L(X,Y) such that A−1 ∈
L(Y,X) with ‖A−1‖ ≤ a;

C1 There exists L > 0 such that for each x,y ∈ D the Lipschitz condition

‖F ′(x)−F ′(y)‖ ≤ L‖x−y‖ (17.2.1)

holds;

C2 There exist L0 > 0 such that for each x ∈ D the center-Lipschitz condition

‖F ′(x)−F ′(x0)‖ ≤ L0‖x−x0‖ (17.2.2)

holds;
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C3 There exist x0 ∈ D, α ≥ 0, a0 ≥ 0, a1 ≥ 0, and q ∈ (0,1) such that for

‖A−1 (F ′(x0)−A)‖ ≤ a0, ‖F ′(x0)−A‖ ≤ a1 the following hold

|αn| ≤ α, a+α

(
aL0q

1−q
‖F(x0)‖+a0

)
≤ q (17.2.3)

and

Lq2

2
‖F(x0)‖+

(
L0q

1−q
‖F(x0)‖+a1

)
(α+q) ≤ q; (17.2.4)

C4 There exist x0 ∈ D, α ≥ 0, a0 ≥ 0, a1 ≥ 0, and q ∈ (0,1) such that for

‖A−1 (F ′(x0)−A)‖ ≤ a0, ‖F ′(x0)−A‖ ≤ a1 the inequality (17.2.3) and
(

2

1−q
+

1

2

)
L0q‖F(x0)‖+

(
L0q

1−q
‖F(x0)‖+a1

)
(α+q) ≤ q (17.2.5)

hold;

C5 U(x0, r)⊆ D with r =
q‖F(x0)‖

1−q
.

Notice that (1) implies (2),

L0 ≤ L (17.2.6)

holds in general and L
L0

can be arbitrarily large [2, 3, 6]. The conditions involving ‖F(x0)‖
and q in (3) and (4) can be solved for ‖F(x0)‖ and q. However, these representations are

very long and unattractive. That is why we decided to leave these conditions as uncluttered

as possible. Notice also that these conditions determine the smallness of ‖F(x0)‖ and q.

From now on we shall denote (0), (1), (2), (3), (5) and (0),(2), (4), (5) as the (C) and

(C0) conditions, respectively. Next, we present the semilocal convergence of the Damped

Newton-like method (17.1.2) first under the (C) conditions.

Theorem 17.2.1. Suppose that the (C) conditions hold. Then sequence {xn} generated

by the Damped Newton method (17.1.2) is well defined, remains in U(x0, r) for each n =

0,1,2, . . ., and converges to a solution x∗ ∈ U(x0, r) of equation (17.1.1). Moveover, the

following estimates hold for each n = 0,1,2, . . .,

‖xn+1−xn‖ ≤ q‖F(xn)‖ ≤ qn+1‖F(x0)‖, (17.2.7)

and

‖F(xn+1)‖ ≤ q‖F(xn)‖ ≤ qn+1‖F(x0)‖, (17.2.8)

where q is defined in (3) and r in (5).

Proof. We have by (17.1.2) and A−1 ∈ L(Y,X) that sequence {xn} is well defined. Then,

we shall show that x1 ∈ U(x0, r), ‖x1 − x0‖ ≤ q‖F(x0)‖ and ‖F(x1)‖ ≤ q‖F(x0)‖. Indeed,

we have by (17.1.2) for n = 0 and the second condition in (3) that

‖x1 −x0‖ = ‖A−1
(
I −α0

(
F ′(x0)−A

))
F(x0)‖

≤
[
‖A−1‖+ |α0|‖A−1

(
F ′(x0)−A

)]
‖F(x0)‖

≤
[
‖A−1‖+α‖A−1

(
F ′(x0)−A

)]
‖F(x0)‖

≤ q‖F(x0)‖< r.
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Hence, x1 ∈ U(x0, r) and (17.2.7) holds for n = 0. Using (17.1.2) it can easily be seen that

the Ostrowski-type approximation

F(xn+1) =
Z 1

0

[
F ′ (xn +θ(xn+1 −xn))−F ′(xn)

]
(xn+1−xn) dθ

+
(
F ′(xn)−A

)
(αnF(xn)+(xn+1 −xn))

(17.2.9)

holds. Using (17.2.9), and the (C) conditions, for n = 0 we get in turn that

‖F(x1)‖ =
∥∥∥

Z 1

0

[
F ′ (x0 +θ(x1 −x0))−F ′(x0)

]
(x1 −x0) dθ

+
(
F ′(x0)−A

)
(α0F(x0)+(x1 −x0))

∥∥∥

≤ L0

2
‖x1 −x0‖2 +

∥∥F ′(x0)−A
∥∥(|α0|‖F ′(x0)‖+‖x1 −x0‖

)

≤ L

2
q2‖F(x0)‖2 +

∥∥F ′(x0)−A
∥∥ (α‖F(x0)‖+q‖F(x0)‖)

≤
[

L

2
q2‖F(x0)‖+

∥∥F ′(x0)−A
∥∥ (α+q)

]
‖F(x0)

≤ q‖F(x0)‖.

That is (17.2.8) holds for n = 0. It follows from the existence of x1 ∈ U(x0, r) and A−1 ∈
L(X,Y) that x2 is well defined. Using (17.1.2) for n = 1, we get by (0), (2), (3) that

‖x2 −x1‖ = ‖A−1
(
I −α1

(
F ′(x1)−A

))
F(x1)‖

≤
[
‖A−1‖+α‖A−1

((
F ′(x1)−F ′(x0)

)
+
(
F ′(x0)−A

))]
‖F(x1)‖

≤
[
‖A−1‖+α

(
‖A−1‖L0‖x1 −x0‖+

∥∥A−1
(
F ′(x0)−A

)∥∥)]‖F(x1)‖
≤ q‖F(x1)‖ ≤ q2‖F(x0)‖.

We also have that

‖x2 −x0‖ ≤ ‖x2 −x1‖+‖x1 −x0‖
≤ q2‖F(x0)‖+q‖F(x0)‖
= q‖F(x0)‖(1+q)‖

= q‖F(x0)‖
1−q2

1−q

<
q‖F(x0)‖

1−q
= r. (17.2.10)
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That is, x2 ∈U(x0, r). Then, using (17.2.9) for n = 1, as above we get in turn that

‖F(x2)‖ ≤
L

2
‖x2 −x1‖2

+
(
L0 ‖x1 −x0‖+

∥∥F ′(x0)−A
∥∥)(|α0|‖F ′(x1)‖+‖x2 −x1‖

)

≤ L

2
q2‖F ′(x1)‖2

+
(
L0q‖F(x0)‖+

∥∥F ′(x0)−A
∥∥)(α‖F(x1)‖+q‖F(x1)‖)

≤
[

L

2
q2‖F ′(x1)‖+

(
L0q‖F(x0)‖+

∥∥F ′(x0)−A
∥∥)(α+q)

]
‖F(x1)‖

≤ q‖F(x1)‖ ≤ q2‖F(x0)‖.
Similarly, we have using (17.1.2) that

‖x3 −x2‖ ≤
[
‖A−1‖+α‖A−1

((
F ′(x2)−F ′(x0)

)
+
(
F ′(x0)−A

))]
‖F(x2)‖

≤
[
‖A−1‖+α

(
‖A−1‖L0‖x2 −x0‖+

∥∥A−1
(
F ′(x0)−A

)∥∥)]‖F(x2)‖
≤ q‖F(x2)‖ ≤ q3‖F(x0)‖.

We also have that

‖x3 −x0‖ ≤ ‖x3 −x2‖+‖x2 −x1‖+‖x1 −x0‖
≤ (q3 +q2 +q)‖F(x0)‖

= q‖F(x0)‖
1−q3

1−q
< r,

and

‖F(x3)‖ ≤
L

2
‖x3 −x2‖2

+
(
L0 ‖x2 −x0‖+

∥∥F ′(x0)−A
∥∥)(|α0|‖F ′(x1)‖+‖x3 −x2‖

)

≤ L

2
q2‖F(x2)‖2

+

(
L0

q‖F(x0)‖
1−q

+
∥∥F ′(x0)−A

∥∥
)

(α‖F(x2)‖+q‖F(x2)‖)

≤
[

L

2
q2‖F(x2)‖+

(
L0

q‖F(x0)‖
1−q

+
∥∥F ′(x0)−A

∥∥
)

(α+q)

]
‖F(x2)‖

≤ q‖F(x2)‖ ≤ q3‖F(x0)‖.
The rest follows in analogous way using induction (simply replace x2,x3 by xn,xn+1 in the

above estimates). By letting n → ∞ in (17.2.7) we obtain F(x∗) = 0.

Condition (1) may not be satisfied but weaker condition (2) may be satisfied. In this

case (1) can be dropped. Then, using instead of approximation (17.2.9) the approximation

F(xn+1) =

Z 1

0

[
F ′ (xn +θ(xn+1−x0))−F ′(x0)

]
(xn+1−xn) dθ

+
(
F ′(x0)−F ′(xn)

)
(xn+1−xn)

+
[(

F ′(xn)−F ′(x0)
)
+
(
F ′(x0)−A

)]
(αnF(xn)+(xn+1 −xn)) ,

(17.2.11)
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we arrive in an analogous way to Theorem 17.2.1 at the following semilocal convergence

result for the Damped Newton method (17.1.2) under the (C0) conditions.

Theorem 17.2.2. Suppose that the (C0) conditions hold. Then sequence {xn} generated

by the Damped Newton method (17.1.2) is well defined, remains in U(x0, r) for each n =
0,1,2, . . ., and converges to a solution x∗ ∈ U(x0, r) of equation (17.1.1). Moveover, the

following estimates hold for each n = 0,1,2, . . .,

‖xn+1−xn‖ ≤ q‖F(xn)‖ ≤ qn+1‖F(x0)‖,

and

‖F(xn+1)‖ ≤ q‖F(xn)‖ ≤ qn+1‖F(x0)‖,
where q is defined in (4) and r in (5).

Concerning the uniqueness of the solution x∗ in U(x0, r) we have the following result.

Proposition 17.2.3. Suppose that the (C) or (C0) conditions hold. Moveover, suppose that

there exist x0 ∈ D and r1 ≥ r such that F ′(x0)
−1 ∈ L(X,Y) and

F ′(x0)
−1L0(r1 + r) < 2. (17.2.12)

Then the solution x∗ is the only solution of equation (17.1.1) in U(x0, r1), where r is defined

in (5).

Proof. The existence of the solution x∗ is guaranteed by conditions (C) or (C0). To show

uniqueness, let y∗ ∈U(x0, r1) with F(y∗) = 0. Define M =
R 1

0 F ′(x∗+θ(y∗−x∗))dθ. Then,

using (2) and (17.2.12) we obtain in turn that

‖F ′(x0)
−1‖‖M −F ′(x0)‖ ≤ ‖F ′(x0)

−1‖L0

Z 1

0
‖(x∗−x0)+θ(y∗−x∗)‖ dθ

≤ ‖F ′(x0)
−1‖L0

Z 1

0
‖(1−θ)(x∗−x0)+θ(y∗−x0)‖ dθ

≤ ‖F ′(x0)
−1‖L0

2
(r + r1) < 1. (17.2.13)

It follows from (17.2.13) and the Banach lemma on invertible operator [10] that M −1 ∈
L(Y,X). Moreover, we have that 0 = F(y∗)−F(x∗) = M (y∗− x∗), which implies x∗ =

y∗.

17.3. Local Convergence

In this section we present the local convergence of Newton-like method(17.1.2). We shall

use the following conditions:

C0 F : D ⊆ X → Y is Fréchet-differentiable and there exists A ∈ L(X,Y), x∗ ∈ D such

that A−1 ∈ L(Y,X), F(x∗) = 0 with ‖A−1‖ ≤ a and ‖F ′(x∗)‖ ≤ β;

C1 There exist L > 0 such that for each x,y ∈ D the Lipschitz condition (17.2.1) holds;
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C2 There exists l0 > 0 such that for each x ∈ D the center-Lipschitz condition(17.2.2)

‖F ′(x)−F ′(x∗)‖ ≤ l0‖x−x∗‖

holds;

C3 Let ‖A−1 (F ′(x∗)−A)‖ ≤ β1.

|αn| ≤ α,β1(1+αβ) < 1

Denote by R1 the positive root of quadratic polynomial

p1(t) =
αl2

0

2
at2 +

(
La

2
+

αl0β1

2
+ l0a+αl0aβ

)
t +β1(1+αβ)−1; (17.3.1)

Moreover, denote by R2 the positive root of quadratic polynomial

p2(t) =
aαl2

0

2
t2 +

(
3al0

2
+

αl0β1

2
+ l0a+αl0aβ

)
t +β1(1+αβ)−1; (17.3.2)

C4 U(x∗,R)⊆ D, where R is R1 or R2.

Notice that (1) implies (2),

l0 ≤ L (17.3.3)

holds in general and L
l0

can be arbitrarily large [2, 3, 6]. The quadratic polynomials in (3)

and (4) have a positive root by the second hypothesis in (3) or (4) and since the coefficients

of t and t2 are positive. From now on we shall denote (0), (1), (2), (3), (4) and (0),(2),

(4) as the (H) and (H0) conditions, respectively. Next, we present the local convergence

of Newton-like method (17.1.2) first under the (H) conditions. In view of (17.1.2) and

F(x∗) = 0, we can have the following identity

xn+1 −x∗ = −A−1

{
Z 1

0

[
F ′ (x∗ +θ(xn −x∗))−F ′(xn)

]
dθ

−
(
(A−F ′(x∗))+(F ′(x∗)−F ′(xn))

)[
(I−αnF ′(x∗))

−αn

Z 1

0

[
F ′ (x∗ +θ(xn −x∗))−F ′(x∗)

]]}
(xn −x∗)

(17.3.4)

Then, using (17.2.9), and the (H) conditions, it is standard to arrive at [2, 3, 4, 5, 6, 8, 9, 10,

14, 15]:

Theorem 17.3.1. Suppose that the (H) conditions hold. Then sequence {xn} generated

by the Damped Newton method (17.1.2) is well defined, remains in U(x∗,R1) for each

n = 0,1,2, . . ., and converges to x∗ provided that x0 ∈ U(x∗,R1). Moveover, the following

estimates hold for each n = 0,1,2, . . .,

‖xn+1−x∗‖ ≤ en‖xn −x∗‖ < ‖xn−x∗‖ < R1, (17.3.5)
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where

en =
La

2
‖xn −x∗‖+β1 +αβ1β +

β1αl0

2
‖xn −x∗‖+ l0a‖xn −x∗‖

+αl0aβ‖xn −x∗‖+
αl2

0a

2
‖xn −x∗‖2

< p1(R1)+1 < 1.

In cases (1) cannot be verified by (2) holds, we can present the local convergence of the

Damped Newton method (17.1.2) under the (H0) conditions using the following modifica-

tion of the Ostrowski representation (17.3.4) given by

xn+1−x∗ = −A−1

{
Z 1

0

[
F ′ (x∗ +θ(xn −x∗))−F ′(x∗)

]
dθ

+[F ′(x∗)−F ′(xn)]

−
(
(A−F ′(x∗))+(F ′(x∗)−F ′(xn))

)[
(I−αnF ′(x∗)

−αn

Z 1

0

[
F ′ (x∗ +θ(xn−x∗))−F ′(x∗)

]]}
(xn −x∗)

(17.3.6)

Theorem 17.3.2. Suppose that the (H0) conditions hold. Then sequence {xn} generated

by the Damped Newton method (17.1.2) is well defined, remains in U(x∗,R2) for each

n = 0,1,2, . . ., and converges to x∗ provided that x0 ∈ U(x∗,R2). Moveover, the following

estimates hold for each n = 0,1,2, . . .,

‖xn+1−x∗‖ ≤ e0
n‖xn −x∗‖ < ‖xn−x∗‖ < R2, (17.3.7)

where

e0
n =

3l0a

2
‖xn−x∗‖+β1 +αβ1β+

β1αl0

2
‖xn −x∗‖+ l0a‖xn−x∗‖

+αl0aβ‖xn −x∗‖+
αl2

0a

2
‖xn−x∗‖2

< p2(R2)+1 < 1.

17.4. Numerical Examples

Example 17.4.1. In this example we present an application of the previous analysis to the

Chandrasekhar equation:

x(s) = 1+
s

4
x(s)

Z 1

0

x(t)

s+ t
dt, s ∈ [0,1], (17.4.1)

which arises in the theory of radiative transfer [7]; x(s) is the unknown function which

is sought in C[0,1]. The physical background of this equation is fairly elaborate. It was

developed by Chandraseckhar [7] to solve the problem of determination of the angular

distribution of the radiant flux emerging from a plane radiation field. This radiation field
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must be isotropic at a point, that is the distribution in independent of direction at that point.

Explicit definitions of these terms may be found in the literature [7]. It is considered to be

the prototype of the equation,

x(s) = 1+λsx(s)

Z 1

0

ϕ(s)

s+ t
x(t)dt, s ∈ [0,1],

for more general laws of scattering, where ϕ(s) is an even polynomial in s with

Z 1

0
ϕ(s)ds ≤ 1

2
.

Integral equations of the above form also arise in the other studies [7]. We determine where

a solution is located, along with its region of uniqueness.

Note that solving (17.4.1) is equivalent to solve F(x) = 0, where F : C[0,1] → C[0,1]

and

[F(x)](s) = x(s)−1− s

4
x(s)

Z 1

0

x(t)

s+ t
dt, s ∈ [0,1]. (17.4.2)

To obtain a numerical solution of (17.4.1), we first discretize the problem and approach

the integral by a Gauss-Legendre numerical quadrature with eight nodes,

Z 1

0
f (t)dt ≈

8

∑
j=1

w j f (t j),

where

t1 = 0.019855072, t2 = 0.101666761, t3 = 0.237233795, t4 = 0.408282679,

t5 = 0.591717321, t6 = 0.762766205, t7 = 0.898333239, t8 = 0.980144928,
w1 = 0.050614268, w2 = 0.111190517, w3 = 0.156853323, w4 = 0.181341892,

w5 = 0.181341892, w6 = 0.156853323, w7 = 0.111190517, w8 = 0.050614268.

If we denote xi = x(ti), i = 1,2, . . .,8, equation (3.7) is transformed into the following non-

linear system:

xi = 1+
xi

4

8

∑
j=1

ai jx j, i = 1,2, . . .,8,

where, ai j =
tiw j

ti + t j

.

Denote now x = (x1,x2, . . .,x8)
T , 1 = (1,1, . . .,1)T , A = (ai j) and write the last nonlin-

ear system in the matrix form:

x = 1+
1

4
x� (Ax), (17.4.3)

where � represents the inner product. Set G(x) = x. If we choose x0 = (1,1, . . .,1)T and

x−1 = (0,0, . . .,0)T . Assume sequence {xn} is generated with different choices of αn and

A = F ′(x0). The computational order of convergence (COC) is shown in Table 17.4.1 for

various methods. Here (COC) is defined in [12] by

ρ ≈ ln

(‖xn+1−x?‖∞

‖xn −x?‖∞

)
/ ln

( ‖xn −x?‖∞

‖xn−1 −x?‖∞

)
, n ∈ N,

The Table 17.4.1 shows the (COC).
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Table 17.4.1. The comparison results of the COC for Example 1 using various αn

n αn = 0 αn = 0.0001 αn = 0.001 αn = 0.01 αn = 0.1 αn = 1

ρ 1.0183391 1.0645848 1.0645952 1.0646989 1.0657398 1.0764689

Example 17.4.2. In this example, we consider the Singular Broyden [13] problem defined

as

F1(x) = ((3−hx1)x1 −2x2 +1)2,

Fi(x) = ((3−hxi)xi −xi−1 −2xi+1 +1)2,

Fn(x) = ((3−hxn)xn−xn−1 +1)2,

Taking as starting approximation x0 = (−1, . . .,−1)T and h = 2. The Table 17.4.2

shows the (COC) computed as in previous example.

Table 17.4.2. The comparison results of the COC for Example 2 using various αn

n αn = 0 αn = 0.01 αn = 0.02 αn = 0.03 αn = 0.04 αn = 05

ρ 1.7039443 1.7041146 1.7048251 1.7178472 1.5650132 1.6619946

Example 17.4.3. Let X = Y = R2, D = U(1,1) and x0 = (1,0.5). Define function F on D

for w = (x,y) by

F(w) = (x3 −3xy2 −1,3x2y−y3). (17.4.4)

Then, the Fréchet derivative of F is given by

F ′(w) =

(
3
(
x2 −y2

)
−6xy

6xy 3x2

)

Moreover we see in Figure 17.4.1 the number of iterations needed to arrive at the solution

with 300 digits, starting in x0 = {1,0.5}
Example 17.4.4. Let X = Y = R

3, D = U(0,1) and x∗ = (0,0,0). Define function F on D

for w = (x,y, z) by

F(w) = (ex −1,
e−1

2
y2 +y, z). (17.4.5)

Then, the Fréchet derivative of F is given by

F ′(w) =




ex 0 0

0 (e−1)y+1 0

0 0 1




Notice that we have F(x∗) = 0, F ′(x∗) = F ′(x∗)−1 = diag{1,1,1}
Moreover we see in Figure 17.4.2 the number of iterations needed to arrive at the solu-

tion with 300 digits, starting
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Figure 17.4.1. Number of iterations needed.

Figure 17.4.2. Number of iterations needed.
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Chapter 18

Local Convergence of Inexact

Newton-Like Method under Weak

Lipschitz Conditions

18.1. Introduction

Let X , Y be Banach spaces and D be a non-empty, convex and open subset in X . Let

U(x, r) and U(x, r) stand, respectively, for the open and closed ball in X with center x and

radius r > 0. Denote by L(X ,Y ) the space of bounded linear operators from X into Y . In

this chapter, we are concerned with the problem of approximating a solution x? of equation

F(x) = 0 (18.1.1)

where F is a Fréchet continuously differentiable operator defined on D with values in Y .

Many problems from computational sciences and other disciplines can be brought in the

form of equation 18.1.1 using Mathematical Modelling [1, 3, 6, 7, 9, 12]. The solution of

these equations can rarely be found in closed form. That is why the solution methods for

these equations are iterative. In particular, the practice of numerical analysis for finding

such solutions is essentially connected to variants of Newton’s method [1]-[14]. The study

about convergence matter of iterative procedures is usually centered on two types: semilocal

and local convergence analysis. The semilocal convergence matter is, based on the informa-

tion around an initial point, to give criteria ensuring the convergence of iterative procedure;

while the local one is, based on the information around a solution, to find estimates of the

radii of convergence balls. There is a plethora of studies on the weakness and/or extension

of the hypothesis made on the underlying operators; see for example [1]-[14].

Undoubtedly the most popular iterative method, for generating a sequence approximat-

ing x?, is the Newton’s method (NM) which is defined as

xn+1 = xn −F ′(xn)
−1F(xn) for each n = 0,1,2, . . . (18.1.2)

where x0 is an initial point. There are two difficulties with the implementation of (NM).

The first is to evaluate F ′ and the second difficulty is to exactly solve the following Newton
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equation

F ′(xn)(xn+1−xn) = −F(xn) for each n = 0,1,2, . . .. (18.1.3)

It is well-known that evaluating F ′ and solving equation (18.1.3) may be computationally

expensive [1, 5, 6, 8, 12, 13, 14]. That is why inexact Newton method (INLM) has been

used [1, 2, 8, 9, 12, 13, 14]:

For n = 0 step 1 until convergence do

Find the step ∆n which satisfies

Bn∆n = −F(xn)+ rn, where
‖Pnrn‖

‖PnF(xn)‖
≤ ηn (18.1.4)

Set xn+1 = xn + ∆n where Pn is an invertible operator for each n = 0,1,2, · · · . Here, {rn}
is a null-sequence in the Banach space Y . Clearly, the convergence behavior of (INLM)

depends on the residual controls of {rn} and hypotheses on F ′. In particular, Lipschitz

continuity conditions on F ′ have been used and residual controls of the form

‖rn‖ ≤ ηn‖F(xn)‖,
‖F ′(x?)−1rn‖ ≤ ηn‖F ′(x?)−1F(xn)‖,
‖F ′(x?)−1rn‖ ≤ ηn‖F ′(x?)−1F(xn)‖1+θ,

‖Pnrn‖ ≤ θn‖PnF(xn)‖1+θ,

(18.1.5)

for some θ ∈ [0,1] and for each n = 0,1,2, . . ., have been employed. Here, {ηn}, {θn} are

sequences in [0,1], {Pn} is a sequence in L(Y ,X ) and F ′(x?)−1F ′ satisfies a Lipschitz or

Hölder condition on U(x?, r) [1]-[6], [8, 9, 10, 13, 14].

In this chapter, we are motivated by the works of Argyros et al.[1, 2], Chen et al.[5]

and Zhang et al.[13] and optimization considerations. We suppose that F has a continuous

Fréchet-derivative in U(x?, r), F(x?) = 0, F ′(x?)−1F ′ exists and F ′(x?)−1F ′ satisfies the

Lipschitz with L−average radius condition

‖F ′(x?)−1(F ′(x)−F ′(xτ))‖ ≤
Z ρ(x)

τρ(x)
L(u)d u (18.1.6)

for each x ∈ U(x?, r). Here, ρ(x) = ‖x−x?‖, xτ = x? + τ(x− x?), τ ∈ [0,1] and L is a

monotone function on [0, r]. Condition (18.1.6) was inagurated by Wang in [14].

In view of (18.1.6) there exists a monotone function L0 on [0, r] such that the center

Lipschitz with L0−average condition

‖F ′(x?)−1(F ′(x)−F ′(x?))‖ ≤
Z ρ(x)

0
L0(u)d u (18.1.7)

holds for each x ∈ U(x?, r). Clearly, we have

L0(u)≤ L(u) (18.1.8)

for each u ∈ [0, r] and L/L0 can be arbitrarily large [1, 2, 4] (see also the numerical ex-

ample at the end of the chapter). It is worth noticing that (18.1.7) is not an additional to
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(18.1.6) hypothesis, since in practice the convergence of (18.1.6) requires the computation

of (18.1.7).

In the computation of ‖F(x)−1F ′(x?)‖ we use the condition (18.1.7) which is tighter

than 18.1.6, and the Banach lemma on invertible operators [7], to obtain the perturbation

bound

‖F ′(x)−1F ′(x?)‖ ≤
(

1−
Z ρ(x)

0
L0(u)d u

)−1

for each x ∈ U(x?, r), (18.1.9)

instead of using 18.1.6 to obtain

‖F ′(x)−1F ′(x?)‖≤
(

1−
Z ρ(x)

0
L(u)du

)−1

for each x ∈U(x?, r). (18.1.10)

Notice that (18.1.6) and (18.1.10) have been used in [5], [13], [14]. It turns out that using

(18.1.9) instead of (18.1.10), in the case when L0(u) < L(u) for each u ∈ [0, r], leads to

tighter majorizing sequences for (INLM). This observation in turn leads to the following

advantages over the earlier works (for ηn = 0 for each n = 0,1,2, . . . or not and L being a

constant or not):

1. Larger radius of convergence.

2. Tighter error estimates on the distances ‖xn+1−xn‖, ‖xn −x?‖ for each n = 0,1,2, . . ..

3. Fewer iteration to achieve a desired error tolerance.

The rest of the chapter is organized as follows. In Section 18.2 we present some auxiliary

results. Section 18.3 contains the local convergence analysis of (INLM). In Section 18.4, we

present special cases. The numerical example appears in Section 18.5 and the conclusion

in Section 18.6.

18.2. Background

In this section we present three auxiliary results. The first two are Banach-type perturbation

lemmas.

Lemma 18.2.1. Suppose that F is such that F ′ is continuously Fréchet- differentiable in

U(x?, r), F ′(x?)−1 ∈ L(Y ,X ) and F ′(x?)−1F ′ satisfies the center-Lipschitz condition with

L0−average. Let r satisfy
Z r

0
L0(u)du ≤ 1. (18.2.1)

Then, for each x ∈U(x?, r), F ′(x) is invertible and

‖F ′(x)−1F ′(x?)‖ ≤ 1

1−R ρ(x)
0 L0(u)du

. (18.2.2)
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Proof. Let x ∈U(x?, r). Using (18.1.7) and (18.2.1) we get in turn that

‖F ′(x?)−1(F ′(x)−F ′(x?))‖ ≤
Z ρ(x)

0
L0(u)du <

Z r

0
L0(u)du ≤ 1. (18.2.3)

It follows from (18.2.3) and the Banach Lemma on invertible operators [7] that F ′(x)−1 ∈
L(Y ,X ) and (18.2.2) holds.

Lemma 18.2.2. Suppose that F is such that F ′ is continuously Fréchet-differentiable in

U(x?, r), F ′(x?)−1 ∈ L(Y ,X ) and F ′(x?)−1F ′ satisfies the radius Lipschitz condition with

L−average and the center-Lipschitz condition with L0−average. Then, we have

‖F ′(x)−1F(x)‖ ≤ ρ(x)+

R ρ(x)
0 L(u)udu−R ρ(x)

0 (L(u)−L0(u))ρ(x)du

1−R ρ(x)
0 L0(u)du

(18.2.4)

≤ ρ(x)+

R ρ(x)
0 L(u)udu

1−R ρ(x)
0 L0(u)du

. (18.2.5)

If F ′(x?)−1F ′ satisfies the center-Lipschitz condition, then we have

‖F ′(y)−1F(x)‖ ≤ ρ(x)+
R ρ(x)

0 L0(u)(ρ(x)−u)ρ(x)du

1−R ρ(y)
0 L0(u)du

(18.2.6)

Proof. Let x ∈U(x?, r). We have that

‖F ′(x)−1F(x)‖ ≤ ‖F ′(x)−1F(x?)‖‖F ′(x?)−1F(x)‖. (18.2.7)

But in view of (18.2.2) and the estimate

‖F ′(x)−1F(x)‖ ≤ ρ(x)+
Z ρ(x)

0
L(u)(u−ρ(x))du (18.2.8)

shown in [5, Lemma 2.1, 1.3], we obtain that

‖F ′(x)−1F(x)‖ ≤ ρ(x)+
R ρ(x)

0 L(u)(u−ρ(x))ρ(x)du

1−R ρ(x)
0 L0(u)du

which implies (18.2.4) and since L0(u)≤ L(u) (18.2.4) implies (18.2.5). Estimate (18.2.6)

is shown in [5, Lemma 2.2, 1.3].

Remark 18.2.3. If L0 = L , then our two preceeding results are reduced to the correspond-

ing ones in [5, 13]. Otherwise, i.e., if strict inequality holds in (18.1.8), then our estimates

are more precise, since

1

1−R ρ(x)
0 L0(u)du

<
1

1−R ρ(x)
0 L(u)du

(18.2.9)

and

ρ(x)+

R ρ(x)
0 L(u)udu

1−R ρ(x)
0 L0(u)du

< ρ(x)+

R ρ(x)
0 L(u)udu

1−R ρ(x)
0 L(u)du

. (18.2.10)
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Notice that the right hand sides of (18.2.9) and (18.2.10) are the upper bounds of the norms

‖F ′(x)−1F(x?)‖, ‖F ′(x)−1F(x)‖, respectively obtained in the corresponding Lemmas in

[5], [13].

It turns out that in view of estimates (18.2.9) and (18.2.10), we obtain the advantages al-

ready mentioned in the introduction of this chapter of our approach over the corresponding

ones in [5, 13, 14].

Next, we present another auxiliary result due to Wang [14, Lemma 2.2].

Lemma 18.2.4. Suppose that the function Lα defined by

Lα(t) := t1−αL(t) (18.2.11)

is nondecreasing for some α with α∈ [0,1], where L is a positive integrable function. Then,

for each β ≥ 0, the function ϕβ,α defined by

ϕβ,α =
1

tα+β

Z t

0
uβL(u)du (18.2.12)

is also nondecreasing.

18.3. Local Convergence

In this section we present the local convergence of inexact Newton method using (18.1.6)

and (18.1.7). We shall first consider the case Bn = F ′(xn) for each n = 0,1,2, · · · .

Theorem 18.3.1. Suppose x? satisfies (18.1.1), F has a continuous Fréchet derivative in

U(x?, r), F ′(x?)−1 exists and F ′(x?)F ′ satisfies the radius Lipschitz condition (18.1.6) and

the center-Lipschitz condition (18.1.7). Assume Bn = F ′(xn), for each n in (18.1.3), vn =

θn‖(PnF ′(xn))
−1‖‖PnF ′(xn)‖ = θnCond(PnF ′(xn)) with vn ≤ v < 1. Let r > 0 satisfy

Z r

0
L0(u)du ≤ 1−v

2
. (18.3.1)

Then (INLM) (for Bn = F ′(xn)) is convergent for all x0 ∈ U(x?, r) and

‖xn+1 −x?‖ ≤
(

(1+v)

R ρ(x0)
0 L(u)du

1−R ρ(x0)
0 L0(u)du

+v

)
‖xn −x?‖, (18.3.2)

where

q = (1+v)

R ρ(x0)
0 L(u)du

1−R ρ(x0)
0 L0(u)du

+v (18.3.3)

is less than 1. Further, suppose that the function Lα defined in (18.2.11) is nondecreasing

for some α with 0 < α ≤ 1. Let r̃ satisfy

(1+v)
R r̃

0 L(u)udu

1−R r̃
0 L0(u)du

+v ≤ 1. (18.3.4)
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Then (INLM) (for Bn = F ′(xn)) is convergent for all x0 ∈ U(x?, r̃) and

‖xn+1 −x?‖ ≤
(

(1+v)

R ρ(x0)
0 L(u)du

ρ(x0)1+α(1−R ρ(x0)
0 L0(u)du)

ρ(xn)
α +v

)
‖xn −x?‖, (18.3.5)

where

q̃ = (1+v)

R ρ(x0)
0 L(u)du

ρ(x0)(1−R ρ(x0)
0 L0(u)du)

+v (18.3.6)

is less than 1.

Proof. Let x0 ∈ B(x?, r), where r satisfies (18.3.1), then q given by (18.3.3) is such that

q ∈ (0,1). Indeed, by the positivity of L , we have

q = (1+v)

R ρ(x0)
0 L(u)du

1−R ρ(x0)
0 L0(u)du

+v

< (1+v)

R r
0 L(u)du

1−R r
0 L0(u)du

+v ≤ 1.

Suppose that (notice that x0 ∈U(x?, r)) xn ∈ U(x?, r), we have by (18.1.3)

xn+1 −x? = xn −x? −F ′(xn)
−1(F(xn)−F(x?))+F ′(xn)

−1rn

= F ′(xn)
−1F(x?)

Z 1

0
F ′(x?)−1(F ′(xn)−F ′(xθ))(xn−x?)dθ+F ′(xn)P−1

n Pnrn

where xθ = x? +θ(xn−x?). It follows, by Lemma 18.2.1 and 18.2.2 and conditions (18.1.6)

and (18.1.7) that we can obtain in turn

‖xn+1−x?‖ = ‖F ′(xn)
−1F(x?)‖

Z 1

0
‖F ′(x?)−1(F ′(xn)−F ′(xθ))‖‖(xn−x?)‖dθ

+θn‖F ′(xn)P−1
n ‖‖PnF(xn)‖

≤ 1

1−R ρ(x)
0 L0(u)du

Z 1

0

Z ρ(x)

θρ(x)
L(u)duρ(x)dθ

+θn‖(PnF ′(xn))
−1‖‖PnF ′(xn)F ′(xn)

−1F(xn)‖

≤
R ρ(x)

0 L(u)udu

1−R ρ(x)
0 L0(u)du

Z 1

0

Z ρ(x)

θρ(x)
L(u)duρ(x)dθ

+θnCond(PnF ′(xn))

(
‖xn−x?‖+

R ρ(xn)
0 L(u)du

1−R ρ(xn)
0 L0(u)du

)

≤ (1+vn)

R ρ(xn)
0 L(u)udu

1−R ρ(xn)
0 L0(u)du

+vnρ(xn)

≤
(

(1+vn)

R ρ(xn)
0 L(u)du

1−R ρ(xn)
0 L0(u)du

+vn

)
ρ(xn). (18.3.7)
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In particular, if n = 0 in (18.3.7), we obtain ‖x1 − x?‖ ≤ q‖x0 − x?‖. Hence x1 ∈ U(x?, r),

this shows that (INLM) can be continued an infinite number of times. By mathematical

induction, all xn ∈ U(x?, r) and ρ(xn) = ‖xn − x?‖ decreases monotonically. Consequently,

we have for each n = 0,1,2, · · ·

‖xn+1−x?‖ ≤
(

(1+vn)

R ρ(xn)
0 L(u)du

1−R ρ(xn)
0 L0(u)du

+vn

)
‖xn −x?‖

≤
(

(1+v)

R ρ(x0)
0 L(u)du

1−R ρ(x0)
0 L0(u)du

+v

)
‖xn −x?‖.

Hence, we showed (18.3.3). Moreover, if r̃ satisfies (18.3.4) and Lα defined by (18.2.11) is

nondecreasing for some α with 0 < α ≤ 1, then we get

q̃ = (1+v)

R ρ(x0)
0 L(u)udu

ρ(x0)1+α(1−R ρ(x0)
0 L0(u)du)

ρ(x0)
α +v

< (1+v)

R r̃
0 L(u)udu

r̃1+α(1−R r̃
0 L0(u)du)

r̃α +v ≤ 1.

If, n = 0 in (18.3.1), we get ‖x1−x?‖ ≤ q̃‖x0−x?‖< ‖x0−x?‖. Hence, x1 ∈U(x?, r̃). That

is (INM) can be continued an infinite number of times. It follows by mathematical induction

that, all xn belongs to U(x?, r̃) and ρ(xn) = ‖xn − x?‖ decreases monotonically. Therefore,

for all k ≥ 0, from (18.3.7) and lemma 18.2.4 we get in turn that

‖xn −x?‖ ≤ (1+vn)

R ρ(xn)
0 L(u)udu

1−R ρ(xn)
0 L0(u)du

+vnρ(xn)

= (1+vn)
ϕ1,α(ρ(xn))

1−R ρ(xn)
0 L0(u)du

ρ(xn)
1+α +vnρ(xn)

≤ (1+vn)
ϕ1,α(ρ(x0))

1−R ρ(x0)
0 L0(u)du

ρ(xn)
1+α +vnρ(xn)

≤ (1+v)
ϕ1,α(ρ(x0))

1−R ρ(x0)
0 L0(u)du

ρ(xn)
1+α +vρ(xn).

�

Remark 18.3.2. If L0 = L our Theorem 18.3.1 reduces to Theorem 18.3.1 in [13] (see also

[5]). Otherwise, i.e., if L0 < L , then our Theorem 18.3.1 constitutes an improvement. In

particular, for v = 0, the estimate for the radii of convergence ball for Newton’s method are

given by
Z r

0
L0(u)du≤ 1

2

and
1

r̃

Z r̃

0
(L0(u)r̃+L(u)u)du ≤ 1,
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which reduce to the ones in [14] if L0 = L . Then, we can conclude that vanishing residual,

Theorem 18.3.1 merges into the theory of the Newton method. Besides, if the function Lα

defined by (18.2.11) is nondecreasing for α = 1, we improve the result in [5].

Next, we present a result analogous to Theorem 18.3.1 can also be proven for inexact

Newton-like method, where Bn = B(xn) approximates F ′(xn).

Theorem 18.3.3. Suppose x? satisfies (18.1.1), F has a continuous derivative in U(x?, r),
F ′(x?)−1 exists and F ′(x?)F ′ satisfies the radius Lipschitz condition (18.1.6) and the

center Lipschitz condition (18.1.7). Let B(x) be an approximation to the F ′(x) for all

x ∈ U(x?, r), B(x) is invertible and

‖B(x)−1F ′(x)‖ ≤ ω1, ‖B(x)−1F ′(x)− I‖ ≤ ω2, (18.3.8)

where vn = θn‖(PnF ′(xn))
−1‖‖PnF ′(xn)‖= θnCond(PnF ′(xn))‖ with vn ≤ v < 1. Let r > 0

satisfy
Z r

0
L0(u)du <

1−ω2 −ω1v

1+ω1 −ω2

. (18.3.9)

Then the (INLM) method is convergent for all x0 ∈ U(x?, r) and

‖xn+1 −x?‖ ≤
(

(1+v)
ω1

R ρ(x0)
0 L(u)du

1−R ρ(x0)
0 L0(u)du

+ω2 +ω1v

)
‖xn −x?‖, (18.3.10)

where

q = (1+v)
ω1

R ρ(x0)
0 L(u)du

1−R ρ(x0)
0 L0(u)du

+ω2 +ω1v (18.3.11)

is less than 1. Further, suppose that the function Lα defined by (18.2.11) is nondecreasing

for some α with 0 < α ≤ 1. Ler r̃ satisfy

(1+v)
ω1

R r̃
0 L(u)du

1−R r̃
0 L0(u)du

+ω2 +ω1v ≤ 1. (18.3.12)

Then (INLM) is convergent for all x0 ∈ U(x?, r̃) and

‖xn+1 −x?‖ ≤ (1+v)
ω1

R ρ(x0)
0 L(u)du

ρ(x0)1+α(1−R ρ(x0)
0 L0(u)du)

ρ(xn)
1+α +(ω2 +ω1v)ρ(xn),

(18.3.13)

where

q̃ = (1+v)
ω1

R ρ(x0)
0 L(u)du

1−R ρ(x0)
0 L0(u)du

+ω2 +ω1v (18.3.14)

is less than 1.

Proof. Let x0 ∈ U(x?, r), where r satisfies (18.3.9), then q given by (18.3.11) is such that

q ∈ (0,1). Indeed, by the positivity of L , we have

q = (1+v)
ω1

R ρ(x0)
0 L(u)du

1−R ρ(x0)
0 L0(u)du

+ω2 +ω1v

= (1+v)
ω1

R r
0 L(u)du

1−R r
0 L0(u)du

+ω2 +ω1v ≤ 1.
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Moreover, if xn ∈U(x?, r), we have by (18.1.3) in turn that

xn+1 −x? = xn −x? −B−1
n (F(xn)−F(x?))+B−1

n rn

= xn −x? −
Z 1

0
B−1

n F ′(xθ)dθ(xn −x?)+B−1
n P−1

n Pnrn

= −B−1
n F ′(xn)

Z 1

0
F ′(xn)

−1F ′(x?)F ′(x?)−1(F ′(x?)−F ′(xθ))(xn−x?)dθ

+B−1
n (F ′(xn)−Bn)(xn −x?)+B−1

n P−1
n Pnrn,

where xθ = x? + θ(xn − x?). Using, Lemma 18.2.1 and 18.2.2 and condition (18.3.8) we

obtain

‖xn+1 −x?‖ ≤ ‖B−1
n F ′(xn)‖

Z 1

0
‖F ′(xn)

−1F ′(x?)‖‖F ′(x?)−1(F ′(x?)−F ′(xθ))‖

‖xn −x?‖dθ+‖B−1
n (F ′(xn)−Bn)‖‖xn−x?‖+θn‖B−1

n P−1
n ‖‖BnF(xn)‖

≤ ω1

1−R ρ(xn)
0 L0(u)du

Z 1

0

Z ρ(xn)

θρ(xn)
L(u)duρ(xn)dθ

+θn‖P−1
n F ′(xn)‖‖(PnF ′(xn))

−1‖‖PnF ′(xn)‖‖F′(xn)
−1F(xn)‖

≤ ω1

R ρ(xn)
0 L(u)udu

1−R ρ(xn)
0 L0(u)du

+ω2ρ(xn)+ω1vn

(
ρ(xn)+

R ρ(xn)
0 L(u)udu

1−R ρ(xn)
0 L0(u)du

)

≤ (1+vn)
ω1

R ρ(xn)
0 L(u)udu

1−R ρ(xn)
0 L0(u)du

+(ω2 +ω1vn)ρ(xn) (18.3.15)

≤
(

(1+vn)
ω1

R ρ(xn)
0 L(u)udu

1−R ρ(xn)
0 L0(u)du

+ω2 +ω1vn

)
ρ(xn).

If n = 0,in (18.3.15), we obtain ‖x1 − x?‖ ≤ q‖x0 − x?‖ < ‖x0 − x?‖. Hence x1 ∈ U(x?, r),
this shows that the iteration can be continued an infinite number of times. By mathematical

induction, xn ∈ U(x?, r) and ρ(xn) = ‖xn − x?‖ decreases monotonically. Therefore, for all

n ≥ 0, we have in turn that

‖xn+1−x?‖ ≤
(

(1+vn)
ω1

R ρ(xn)
0 L(u)udu

1−R ρ(xn)
0 L0(u)du

+ω2 +ω1vn

)
ρ(xn)

≤
(

(1+v)
ω1

R ρ(x0)
0 L(u)udu

1−R ρ(x0)
0 L0(u)du

+ω2 +ω1v

)
ρ(xn),

which implies (18.3.10). Furthermore, if r̃ satisfies (18.3.12) and Lα defined by (18.2.11)

is nondecreasing for some α with 0 < α ≤ 1, then we get

q̃ = (1+v)
ω1

R ρ(x0)
0 L(u)udu

ρ(x0)1+α(1−R ρ(x0)
0 L0(u)du)

ρ(xn)
α +ω2 +ω1v

< (1+v)
ω1

R r̃
0 L(u)udu

r̃1+α(1−R r̃
0 L0(u)du)

r̃α +ω2 +ω1v ≤ 1.
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If, n = 0 in (18.3.15), we obtain ‖x1 −x?‖ ≤ q̃‖x0 −x?‖ < ‖x0 −x?‖. Hence, x1 ∈U(x?, r̃),

this shows that (18.1.4) can be continued infinite number of times. By mathematical induc-

tion, xn ∈U(x?, r̃) and ρ(xn) = ‖xn −x?‖ decreases monotonically. Therefore, for all n ≥ 0,
we have

‖xn+1−x?‖ ≤ (1+vn)
ω1

R ρ(xn)
0 L(u)udu

1−R ρ(xn)
0 L0(u)du

+(ω2 +ω1vn)ρ(xn)

≤ (1+v)
ω1ϕ1,α(ρ(xn))

1−R ρ(x0)
0 L0(u)du

ρ(xn)
1+α +(ω2 +ω1v)ρ(xn)

≤ (1+v)
ω1ϕ1,α(ρ(x0))

1−R ρ(x0)
0 L0(u)du

ρ(xn)
1+α +(ω2 +ω1v)ρ(xn).

�

Remark 18.3.4. If L0 = L our Theorem 18.3.3 reduces to Theorem 18.3.2 in [13] (see also

[5]). Otherwise, i.e., if L0 < L , then our Theorem 18.3.3 constitutes an improvement. In

in Theorem 18.3.2, the function Łα defined by (18.2.11) is nondecreasing for α = 1, we

improve the result of [5]. In particular, for v = 0, we can get the radii of converence ball

for the Newton-like method [14].

18.4. Special Cases

In this section, we consider the following special cases of Theorem 18.3.1 and Theorem

18.3.3:

Corollary 18.4.1. Suppose x? satisfies (18.1.1), F has a continuous derivative in U(x?, r),
F ′(x?)−1 exist, F ′(x?)F ′ satisfies the radius Lipschitz condition with

L(u) = cαuα−1‖F ′(x?)−1(F ′(x)−F ′(x))‖ ≤ c(1−θα)‖x−x?||α (18.4.1)

for each x ∈U(x?, r), 0 ≤ θ ≤ 1, where xθ = x? +θ(x−x?) and the center- radius Lipschitz

condition with

L0(u) = c0αuα−1‖F ′(x?)−1(F ′(x)−F ′(x?))‖ ≤ c0‖x−x?||α (18.4.2)

for each x ∈U(x?, r), 0≤ θ≤ 1 for some c0 ≤ c. Assume Bn = F ′(xn), for each n in (18.1.3),

vn = θn‖(PnF ′(xn))
−1‖‖PnF ′(xn)‖= θnCond(PnF ′(xn)) with vn ≤ v < 1. Let r̃ > 0 satisfy

r̃ =

(
(1−v)(1+α)

c(1+v)α+c0(1−v)(1+α)

) 1
α

.

Then the inexact Newton method is convergent for all x0 ∈ U(x?, r̃) and

‖xn+1 −x?‖ ≤
(

cα(1+v)

(1+α)(1−c0‖x0 −x?‖α)
‖x0 −x?‖α +v

)
‖xn −x?‖,

where

q =
cα(1+v)

(1+α)(1−c0‖x0 −x?‖α)
‖x0 −x?‖α +v

is less than 1.
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Corollary 18.4.2. Suppose x? satisfies (18.1.1), F has a continuous derivative in

U(x?, r), F ′(x?)−1 exists and F ′(x?)F ′ satisfies the radius Lipschitz condition (18.4.1)

and the center Lipschitz condition (18.4.2). Let B(x) be an approximation to the

F ′(x) for all x ∈ B(x?, r), B(x) is invertible and satisfies condition (18.3.8), vn =

θn‖(PnF ′(xn))
−1‖‖PnF ′(xn)‖ = θnCond(PnF ′(xn)) with vk ≤ v < 1. Let r̃ > 0 satisfy

r̃ =

(
(1+α)(1−ω2 −ω1v)

c(1+v)ω1α+c0(1+α)(1−ω2 −ω1v)

) 1
α

.

Then the inexact Newton method is convergent for all x0 ∈U(x?, r̃) and

‖xn+1−x?‖ ≤
(

cα(1+v)ω1

(1+α)(1−c0‖x0−x?‖α)
‖x0 −x?‖+ω2 +ω1v

)
‖xn −x?‖,

where

q =
cα(1+v)ω1

(1+α)(1−c0‖x0 −x?‖α)
‖x0 −x?‖α +ω2 +ω1v

is less than 1.

Remark 18.4.3. (a) If, v = 0 in Corollary 18.4.1, the estimate for the radius of conver-

gence ball for Newton’s method is given by

r̃ =

(
1+α

cα+c0(1+α)

) 1
α

,

which improves the result in [5, 13] for c0 < c. Moreover, if α = 1, our radius reduces

to r̃ = 2
2c0+c

, which is larger than the one obtained by Rheinholdt and Traub [11, 12]

given by r̃ = 2
3c

if c0 < c (see also the numerical examples at the end of the chapter).

(b) The results in section 18.5 of [5, 13] using only center-Lipschitz condition can be

improved, if rewritten using L0 instead of L .

18.5. Examples

Finally, we provide an example where L0 < L .

Example 18.5.1. Let X = Y = R3, D = U(0,1) and x? = (0,0,0). Define function F on D
for w = (x,y, z) by

F(w) = (ex −1,
e−1

2
y2 +y, z). (18.5.1)

Then, the Fréchet derivative of F is given by

F ′(w) =




ex 0 0

0 (e−1)y+1 0

0 0 1




Notice that we have F(x?) = 0, F ′(x?) = F ′(x?)−1 = diag{1,1,1} and L0 = e−1 < L = e.

More examples where L0 < L can be found in [1, 2, 3].
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18.6. Conclusion

Under the hypothesis that F ′(x?)F ′ satisfies the center Lipschitz condition (18.1.7) and the

radius Lipschitz condition (18.1.6), we presented a more precise local convergence analysis

for the enexact Newton method under the same computational cost as in earlier studies such

as Chen and Li [5], Zhang, Li and Xie [13]. Numerical examples are provided to show that

the center Lipschitz function can be smaller than the radius Lipschitz function.
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Chapter 19

Expanding the Applicability of

Secant Method with Applications

19.1. Introduction

In this chapter we are concerned with the problem of approximating a locally unique solu-

tion x? of equation

F(x) = 0, (19.1.1)

where F is a Fréchet–differentiable operator defined on a convex subset D of a Banach

space X with values in a Banach space Y .

A vast number of problems from Applied Science including engineering can be solved

by means of finding the solutions equations in a form like (19.1.1) using mathematical

modelling [7, 10, 15, 18]. For example, dynamic systems are mathematically modeled by

difference or differential equations, and their solutions usually represent the states of the

systems. Except in special cases, the solutions of these equations cannot be found in closed

form. This is the main reason why the most commonly used solution methods are iterative.

Iteration methods are also applied for solving optimization problems. In such cases, the it-

eration sequences converge to an optimal solution of the problem at hand. Since all of these

methods have the same recursive structure, they can be introduced and discussed in a gen-

eral framework. The convergence analysis of iterative methods is usually divided into two

categories: semilocal and local convergence analysis. In the semilocal convergence analy-

sis one derives convergence criteria from the information around an initial point whereas in

the local analysis one finds estimates of the radii of convergence balls from the information

around a solution.

We consider the Secant method in the form

xn+1 = xn −δF(xn−1,xn)
−1 F(xn) (n ≥ 0), (x−1,x0 ∈ D) (19.1.2)

where δF(x,y) ∈ L(X ,Y ) (x,y ∈ D) the space of bounded linear operators from X into Y .

of the Fréchet–derivative of F [15, 18].

The semilocal convergence matter is, based on the information around an initial point,

to give criteria ensuring the convergence of iteration procedures. A very important problem

in the study of iterative procedures is the convergence domain. In general the convergence
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domain is small. Therefore, it is important to enlarge the convergence domain without

additional hypotheses. Another important problem is to find more precise error estimates

on the distances ‖xn+1−xn‖, ‖xn −x?‖. These are our objectives in this chapter.

The secant method, also known under the name of Regula Falsi or the method of chords,

is one of the most used iterative procedures for solving nonlinear equations. According to

A. N. Ostrowski [19], this method is known from the time of early Italian algebraists. In

the case of equations defined on the real line, the Secant method is better than Newton’s

method from the point of view of the efficiency index [7]. The Secant method was extended

for the solution of nonlinear equations in Banach Spaces by A. S. Sergeev [24] and J. W.

Schmidt [23].

The simplified Secant method

xn+1 = xn −δF(x−1,x0)
−1F(xn) (n ≥ 0), (x−1,x0 ∈ D)

was first studied by S. Ulm [25]. The first semilocal convergence analysis was given by

P. Laasonen [21]. His results was improved by F. A. Potra and V. Pták [20, 21, 22]. A

semilocal convergence analysis for general secant-type methods was given in general by J.

E. Dennis [13]. Bosarge and Falb [9], Dennis [10], Potra [20, 21, 22], Argyros [5, 6, 7, 8],

Hernández et al. [13] and others [14], [18], [26], have provided sufficient convergence

conditions for the Secant method based on Lipschitz–type conditions on δF. Moreover,

there exist new graphical tools to study this kind of methods [17].

The conditions usually associated with the semilocal convergence of Secant method

(19.1.2) are:

• F is a nonlinear operator defined on a convex subset D of a Banach space X with

values in a Banach space Y ;

• x−1 and x0 are two points belonging to the interior D0 of D and satisfying the in-

equality

‖ x0 −x−1 ‖≤ c;

• F is Fréchet–differentiable on D0, and there exists an operator δF : D0 × D0 →
L(X ,Y ) such that:

the linear operator A = δF(x−1,x0) is invertible, its inverse A−1 is bounded, and:

‖ A−1 F(x0) ‖≤ η;

‖ A [δF(x,y)−F ′(z)] ‖≤ ` (‖ x− z ‖ + ‖ y− z ‖);

for all x,y, z ∈ D;

` c+2
√

` η ≤ 1. (19.1.3)

The sufficient convergence condition(19.1.3) is easily violated (see the Numerical Ex-

amples). Hence, there is no guarantee in these cases that equation (19.1.1) under the in-

formation (`,c,η) has a solution that can be found using Secant method (19.1.2). In this

chapter we are motivated by optimization considerations, and the above observation.
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The use of Lipschitz and center–Lipschitz conditions is one way used to enlarge the

convergence domain of different methods. This technique consist on using both conditions

together instead of using only the Lipschitz one which allow us to find a finer majorizing

sequence, that is, a larger convergence domain. It has been used in order to find weaker

convergence criteria for Newton’s method by Argyros in [8]. Gutiérrez et al in [12] give

sufficient conditions for Newton’s method using both Lipschitz and center-Lipschitz condi-

tions, for the damped Newton’s methods and Amat et al in [3, 4] or Garcı́a-Olivo [11] for

other methods.

Here using Lipschitz and center–Lipschitz conditions, we provide a new semilocal con-

vergence analysis for (19.1.2). It turns out that our new convergence criteria can always be

weaker than the old ones given in earlier studies such as [2, 14, 16, 18, 20, 21, 22, 23, 26,

27]. The chapter is organized as follows: The semilocal convergence analysis of the secant

method is presented in Section 19.2. Numerical examples are provided in Section 19.3.

19.2. Semilocal Convergence Analysis of the Secant Method

In this Section, we present the semilocal convergence analysis of the secant-method

(19.1.2). First, we present two auxiliary results concerning convergence criteria and ma-

jorizing sequences.

Lemma 19.2.1. Let `0 > 0, ` > 0, c > 0 and η > 0 be constants with `0 ≤ `. Then, the

following items hold

(i)

0 <
`(c+η)

1− `0(c+η)
≤ 2`

`+
√

`2 +4`0`
<

1− `0(c+η)

1− `0c
⇔ c+η ≤ 4`2

(
`+
√

`2 +4`0`
)2

;

(19.2.1)

(ii)

`c ≤
3−
√

1+4 `0

`

1+
√

1+4 `
`0

⇔ (1−`c)2

4
≤ b2 −`c; (19.2.2)

(iii)

`c ≥
3−
√

1+4 `0

`

1+
√

1+4 `
`0

⇔ (1−`c)2

4
≥ b2 −`c; (19.2.3)

(iv)

`c ≤
3−
√

1+4 `0

`

1+
√

1+4 `
`0

and `c+
√

`η ≤ 1 ⇒ c+η ≤ 4`
(
`+
√

`2 +4`0`
)2

c; (19.2.4)
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(v)

`c ≥
3−
√

1+4 `0

`

1+
√

1+4 `
`0

and c+η ≤ 4`
(
`+
√

`2 +4`0`
)2

⇒ `c+
√

`η ≤ 1. (19.2.5)

Proof. Let x = 1−`c, y = `η, a =
`0

`
and b =

2

1+
√

1+4a
. Then, we have that ab2 +b−

1 = 0 and ab+1 =
1

b
.

(i) The triple inequality in (19.2.1) holds, if

`c+`η

1−a`(c+η)
≤ 2`

`+
√

`2 +4a`2
= b, (19.2.6)

b <
1−a`(c+η)

1−a`c
(19.2.7)

and

`(c+η) <
1

a
(19.2.8)

or, if

y ≤ b2− (1−x), (19.2.9)

y <
1−b

a
− (1−b)(1−x) = b2 − (1−b)(1−x), (19.2.10)

and

y ≤ 1

a
− (1−x), (19.2.11)

respectively. We have that ab2 = 1−b < 1 by the definition of a and b. It follows

that

b2 − (1−x) <
1

a
− (1−x) (19.2.12)

and from (1−b)(1−x) < (1−x) we get that

b2 − (1−x) < b2 − (1−b)(1−x). (19.2.13)

Hence, it follows from (19.2.12) and (19.2.13) that (19.2.6)–(19.2.8) are satisfied if

(19.2.9) holds. But (19.2.9) is equivalent to the right hand side inequality in (19.2.1).

Conversely, if the right hand side inequality in (19.2.1) holds, then (19.2.9), (19.2.12)

and (19.2.13) imply (19.2.10) and (19.2.11) imply (19.2.6)–(19.2.8) which imply the

triple inequality in (19.2.1).

(ii)

`c ≤
3−
√

1+4 `0

`

1+
√

1+4 `
`0

⇔ 2(1−b) < x < 2(1+b) ⇔ x2 −4x+4(1−b2) ≤ 0

⇔ x2

4
≤ b2 − (1−x) ⇔ (`η)2

4
≤ b2 −`c.
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(iii)

(`η)2

4
≥ b2 −`c ⇔ x2

4
≥ b2− (1−x) ⇔ x2 −4x+4(1−b2) ≥ 0 ⇒ x ≤ 2(1−b)

⇔ `c ≥
3−
√

1+4 `0

`

1+
√

1+4 `
`0

(since x ≥ 2(1+b) cannot hold).

(iv) The hypotheses in (19.2.4) and (19.2.2) imply `η ≤ b2−`c which is

c+η ≤ 4`
(
`+
√

`2 +4`0`
)2

.

(v) The hypothesis in (19.2.5) and (19.2.3) imply

`c+
√

`η ≤ 1.

�

We need the following result on majorizing sequences for the Secant method (19.1.2).

Lemma 19.2.2. Let `0 > 0, ` > 0, c > 0, and η > 0 be constants with `0 ≤ `.

Suppose:

c+η ≤ 4`2

`+
√

`2 +4`0`
. (19.2.14)

Then, scalar sequence {tn} (n ≥ −1) given by

t−1 = 0, t0 = c, t1 = c+η, tn+2 = tn+1 +
` (tn+1− tn−1) (tn+1− tn)

1−`0 (tn+1− t0 + tn)
(19.2.15)

is increasing, bounded from above by

t?? =
η

1−b
+c, (19.2.16)

and

converges to its unique least upper bound t? such that

c+η ≤ t? ≤ t??, (19.2.17)

Moreover, the following estimates hold for all n ≥ 0:

0 ≤ tn+2− tn+1 ≤ b (tn+1− tn) ≤ bn+1 η, (19.2.18)

where b is given in Lemma 19.2.1.
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Proof. We shall show using induction on k ≥ 0 that

0 ≤ tk+2− tk+1 ≤ b (tk+1− tk). (19.2.19)

Using (19.2.15) for k = 0, we must show

0 <
` (t1− t−1)

1−`0 t1
≤ b

or

0 <
` (c+η)

1−`0 (c+η)
≤ b,

which is true by (19.2.1) and (19.2.14). Let assume that (19.2.19) holds for k ≤ n+1.

It then follows from the induction hypotheses that

tk+2 ≤ tk+1 +b (tk+1− tk)

≤ tk +b (tk − tk−1)+b (tk+1− tk)
≤ t1 +b (t1− t0)+ · · ·+b (tk+1− tk)

≤ c+η+b η+ · · ·+bk+1 η

= c+
1−bk+2

1−b
η <

η

1−b
+c = t??.

(19.2.20)

Moreover, we can have:

` (tk+2− tk+1)+b `0 (tk+2− t0 + tk+1)

≤ `

(
(tk+2− tk+1)+(tk+1− tk)

)
+b `0

(
1−bk+2

1−b
+

1−bk+1

1−b

)
η+b `0 c

≤ ` (bk +bk+1) η+
b `0

1−b
(2−bk+1−bk+2) η+b `0 c.

(19.2.21)

In view of (19.2.21), inequality (19.2.19) holds, if

` (bk +bk+1) η+
b `0

1−b
(2−bk+1−bk+2) η+b `0 c ≤ b (19.2.22)

or

` (bk−1+bk) η+`0

(
(1+b+ · · ·+bk)+(1+b+ · · ·+bk+1)

)
η+`0 c−1 ≤ 0. (19.2.23)

In view of (19.2.23), we are motivated to define recurrent functions for k ≥ 1 on [0,1)
by

fk(t) = ` (tk−1 + tk) η+`0

(
2 (1+ t + · · ·+ tk)+ tk+1

)
η+`0 c−1. (19.2.24)
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We need the relationship between two consecutive functions fk. Using (19.2.24), we

obtain

fk+1(t) = ` (tk + tk+1) η+`0

(
2 (1+ t + · · ·+ tk+1)+ tk+2

)
η+`0 c−1

= ` (tk−1 + tk) η+` (tk + tk+1) η−` (tk−1 + tk) η

+`0

(
2 (1+ t + · · ·+ tk)+ tk+1

)
η+`0 (2 tk+1 + tk+2) η

−`0 tk+1 η+`0 c−1

= fk(t)+` (tk+1− tk−1) η+`0 (tk+1 + tk+2) η
= p(t) tk−1 η+ fk(t),

(19.2.25)

where p(t) = `0t3 + (`0 + `)t2 − `. Notice that by Descarte’s rule of signs, b is the only

positive root of polynomial p. We can show instead of (19.2.23)

fk(b)≤ 0 k ≥ 1. (19.2.26)

Define functions f∞ on interval [0,1) by f∞(t) = lim
k→∞

fk(t). Then, in view of (19.2.24) we

get that

f∞(t) =
2`0η

1− t
+`0c−1. (19.2.27)

We have that fk(b) = fk+1(b) = f∞(b). Hence, we can show instead of (19.2.26) that

f∞(b) ≤ 0, which is true by (19.2.1), (19.2.14) and (19.2.27). Hence, we showed sequence

{tn} (n ≥ −1) is increasing and bounded from above by t??, so that (19.2.18) holds. It

follows that there exists t? ∈ [c+η, t??], so that lim
n−→∞

tn = t?. �

We denote by U(z,ρ) the open ball centered ar z ∈ X and of radius ρ > 0. We also

denote by Ū(z,ρ) the closure of U(z,ρ). We shall study the Secant method (19.1.2) for

triplets (F,x−1,x0) belonging to the class C (`, `0,η,c) defined as follows:

Definition 19.2.3. Let `, `0, η, c be positive constants satisfying the hypotheses of Lemma

19.2.2.

We say that a triplet (F,x−1,x0) belongs to the class C (`, `0,η,c) if:

(c1) F is a nonlinear operator defined on a convex subset D of a Banach space X with

values in a Banach space Y ;

(c2) x−1 and x0 are two points belonging to the interior D0 of D and satisfying the in-

equality

‖ x0 −x−1 ‖≤ c;

(c3) F is Fréchet–differentiable on D0, and there exists an operator δF : D0 × D0 →
L(X ,Y ) such that:

the linear operator A = δF(x−1,x0) is invertible, its inverse A−1 is bounded and:

‖ A−1 F(x0) ‖ ≤ η;

‖ A [δF(x,y)−F ′(z)] ‖ ≤ ` (‖ x− z ‖ + ‖ y− z ‖);

‖ A [δF(x,y)−F ′(x0)] ‖ ≤ `0 (‖ x−x0 ‖ + ‖ y−x0 ‖)
for all x,y, z ∈ D.
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(c4) the set Dc = {x ∈ D; F is continuous at x} contains the closed ball U(x0, t
? − t0),

where t? is given in Lemma 19.2.2.

We present the following semilocal convergence theorem for Secant method (19.1.2).

Theorem 19.2.4. If (F,x−1,x0) ∈ C (`, `0,η,c), then sequence {xn} (n ≥−1) generated by

Secant method (19.1.2) is well defined, remains in U(x0, t
?− t0) for all n ≥ 0 and converges

to a unique solution x? ∈ U(x0, t
? − t0) of equation F(x) = 0. Moreover the following

estimates hold for all n ≥ 0

‖ xn+2 −xn+1 ‖≤ tn+2− tn+1, (19.2.28)

and

‖ xn −x? ‖≤ t?− tn (19.2.29)

where the sequence {tn} (n≥ 0) given by (19.2.15). Furthermore, if there exists R ≥ t?−t0,

such that

`0 (c+
η

1−b
+R) ≤ 1, (19.2.30)

and

U(x0,R) ⊆ D, (19.2.31)

then, the solution x? is unique in U(x0,R).

Proof. We first show operator L = δF(u,v) is invertible for u,v ∈ U(x0, t
?− t0). It follows

from (19.2.1), (c2) and (c3) that:

‖ I −A−1 L ‖=‖ A−1 (L−A) ‖ ≤ ‖ A−1(L−F ′(x0)) ‖ + ‖ A−1(F ′(x0)−A) ‖
≤ `0 (‖ u−x0 ‖ + ‖ v−x0 ‖ + ‖ x0 −x−1 ‖)
≤ `0 (t?− t0 + t?− t0 +c)

≤ `0

(
2

(
η

1−b
+c

)
−c.

)
< 1

(19.2.32)

According to the Banach Lemma on invertible operators [8], [15], and (19.2.32), L is

invertible and

‖ L−1 A ‖≤
(

1−`0 (‖ xk −x0 ‖ + ‖ xk+1 −x0 ‖ +c)

)−1

. (19.2.33)

The second condition in (c3) implies the Lipschitz condition for F ′

‖ A−1 (F ′(u)−F ′(v)) ‖≤ 2 ` ‖ u−v ‖, u,v ∈ D0. (19.2.34)

By the identity,

F(x)−F(y) =
Z 1

0
F ′(y+ t(x−y)) dt (x−y) (19.2.35)

we get

‖ A−1
0 [F(x)−F(y)−F ′(u)(x−y)] ‖≤ ` (‖ x−u ‖ + ‖ y−u ‖) ‖ x−y ‖ (19.2.36)
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and

‖ A−1
0 [F(x)−F(y)−δF(u,v) (x−y)] ‖≤ ` (‖ x−v ‖ + ‖ y−v ‖+ ‖ u−v ‖) ‖ x−y ‖

(19.2.37)

for all x,y,u,v ∈ D0. By a continuity argument (19.2.34)–(19.2.37) remain valid if x and/or

y belong to Dc. We first show (19.2.28). If (19.2.28) holds for all n ≤ k and if {xn} (n ≥ 0)
is well defined for n = 0,1,2, · · · ,k then

‖ x0 −xn ‖≤ tn − t0 < t?− t0, n ≤ k. (19.2.38)

That is (19.1.2) is well defined for n = k +1. For n = −1, and n = 0, (19.2.28) reduces

to ‖ x−1 − x0 ‖≤ c, and ‖ x0 − x1 ‖≤ η. Suppose (19.2.28) holds for n = −1,0,1, · · · ,k

(k ≥ 0). Using (19.2.33), (19.2.37) and

F(xk+1) = F(xk+1)−F(xk)−δF(xk−1,xk) (xk+1−xk) (19.2.39)

we obtain in turn:

‖ A−1F(xk+1) ‖ = `(‖ xk+1−xk ‖+ ‖ xk −xk−1 ‖) ‖ xk+1−xk ‖
= `(tk+1− tk + tk − tk−1)(tk+1− tk)
= `(tk+1− tk−1)(tk+1− tk)

(19.2.40)

and

‖ xk+2−xk+1 ‖ = ‖ δF(xk,xk+1)
−1 F(xk+1) ‖

≤ ‖ δF(xk,xk+1)
−1 A ‖‖ A−1 F(xk+1) ‖

≤ ` (tk+1− tk + tk − tk−1)

1−`0 (tk+1− t0 + tk − t0 + t0 − t−1)
(tk+1− tk)

= tk+2− tk+1.

(19.2.41)

The induction for (19.2.28) is completed. It follows from (19.2.28) and Lemma 19.2.2

that sequence {xn} (n ≥ −1) is complete in a Banach space X , and as such it converges to

some x? ∈U(x0, t
?− t0) (since U(x0, t

?− t0) is a closed set). By letting k → ∞ in (19.2.41),

we obtain F(x?) = 0. Estimate (19.2.29) follows from (19.2.28) by using standard ma-

joration techniques [7, 15, 18, 22]. We shall first show uniqueness in U(x0, t
? − t0). Let

y? ∈U(x0, t
?− t0) be a solution of equation (19.1.1).

Set

M =
Z 1

0
F ′(y? + t (y?−x?)) dt.

It then by (c3):

‖ A−1 (A−M ) ‖ = `0 (‖ y?−x0 ‖ + ‖ x? −x0 ‖ + ‖ x0 −x−1 ‖)
≤ `0 ((t?− t0)+(t?− t0)+ t0)

≤ `0

(
2

(
η

1−b
+c

)
−c

)

= `0

(
2 η

1−b
+c

)
< 1.

(19.2.42)
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It follows from (19.2.1), and the Banach lemma on invertible operators that M −1 exists

on U(x0, t
?− t0). Using the identity:

F(x?)−F(y?) = M (x?−y?) (19.2.43)

we deduce x? = y?. Finally, we shall show uniqueness in U(x0,R). As in (19.2.42), we

arrive at

‖ A−1 (A−M ) ‖< `0

(
η

1−b
+c+R

)
≤ 1,

by (19.2.30). �

Remark 19.2.5. (a) Let us define the majoring sequence {wn} used in earlier studies such

as [2, 14, 16, 18, 20, 21, 22, 23, 26, 27] (under condition (19.1.3)):

w−1 = 0, w0 = c, w1 = c+η, wn+2 = wn+1 +
` (wn+1−wn−1) (wn+1−wn)

1−` (wn+1−w0 +wn)
.

(19.2.44)

Note that in general

`0 ≤ ` (19.2.45)

holds, and
`

`0

can be arbitrarily large [5, 6, 7, 8]. In the case `0 = `, then tn = wn

(n ≥−1). Otherwise:

tn+1− tn ≤ wn+1 −wn, (19.2.46)

0 ≤ t?− tn ≤ w? −wn, w? = lim
n−→∞

wn. (19.2.47)

Note also that strict inequality holds in (19.2.46) for n ≥ 1, if `0 < `. It is worth notic-

ing that the center-Lipschitz condition is not an additional hypothesis to the Lipschitz

condition, since in practice the computation of constant ` requires the computation

of `0. It follows from the proof of Theorem 19.2.4 that sequence {sn} defined by

s−1 = 0, s0 = c, s1 = c+η, s2 = s1 +
`0(s1− s−1)(s1− s0)

1−`0s1

sn+2 = sn+1 +
`(sn+1− sn−1)(sn+1− sn)

1−`0(sn+1− s0 + sn)
for n = 1,2, . . ..

is also a majorizing sequence for {xn} which is tighter than {tn}.

(b) In practice constant c depends on initial guesses x−1 and x0 which can be chosen to be

as close to each other as we wish. Therefore, in particular, we can always choose

`c <
3−
√

1+4
`0

`

1+

√
1+4

`0

`

,

which according to (iv) in Lemma 19.2.1 implies that the new sufficient convergence

criterion (19.2.14) is weaker than the old one given by (19.1.3).
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19.3. Numerical Examples

Example 19.3.1. Let X = Y = C [0,1], equipped with the max-norm. Consider the follow-

ing nonlinear boundary value problem

{
u′′ = −u3 − γ u2

u(0) = 0, u(1) = 1.

It is well known that this problem can be formulated as the integral equation

u(s) = s+

Z 1

0
Q (s, t) (u3(t)+ γ u2(t)) dt (19.3.1)

where, Q is the Green function:

Q (s, t) =

{
t (1− s), t ≤ s

s (1− t), s < t.

We observe that

max
0≤s≤1

Z 1

0
|Q (s, t)|dt =

1

8
.

Then problem (19.3.1) is in the form (19.1.1), where, F : D −→ Y is defined as

[F(x)] (s) = x(s)− s−
Z 1

0
Q (s, t) (x3(t)+ γ x2(t)) dt.

The Fréchet derivative of the operator F is given by

[F ′(x)y] (s) = y(s)−3

Z 1

0
Q (s, t)x2(t)y(t)dt−2γ

Z 1

0
Q (s, t)x(t)y(t)dt.

Then, we have that

[(I−F ′(x0))(y)](s) = 3

Z 1

0
Q (s, t)x2

0(t)y(t)dt +2γ

Z 1

0
Q (s, t)x0(t)y(t)dt.

Hence, if 2γ < 5, then

‖I −F ′(x0)‖ ≤ 2(γ−2) < 1.

It follows that F ′(x0)
−1 exists and

‖F ′(x0)
−1‖ ≤ 1

5−2γ
.

We also have that ‖F(x0)‖ ≤ 1+ γ. Define the divided difference defined by

δF(x,y) =

Z 1

0
F ′(y+ t(x−y))dt .

Choosing x−1(s) such that ‖x−1−x0‖ ≤ c and k0c < 1. Then, we have

‖δF(x−1,x0)
−1F(x0)‖ ≤ ‖δF(x−1,x0)

−1F ′(x0)‖‖F ′(x0)F(x0)‖
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and

‖δF(x−1,x0)
−1F ′(x0)‖ ≤

1

(1−k0c)
,

where k0 is such that

‖F ′(x0)
−1(F ′(x0)−A0)‖ ≤ k0c,

Set u0(s) = s and D = U(u0,R). It is easy to verify that U(u0,R) ⊂ U(0,R + 1) since

‖ u0 ‖= 1. If 2 γ < 5, and k0c < 1 the operator F ′ satisfies conditions of Theorem 19.2.6,

with

η =
1+ γ

(1−k0c)(5−2 γ)
, l =

γ+6 R+3

8(5−2 γ)(1−k0c)
, l0 =

2 γ+3 R+6

16(5−2 γ)(1−k0c)
.

Choosing R0 = 0.9, γ = 0.5 and c = 1 we obtain that

k0 = 0.1938137822 . . .,

η = 0.465153 . . .,

l = 0.344989 . . .

and

l0 = 0.187999 . . ..

Then, criterion (19.1.3) is not satisfied since lc + 2
√

lη = 1.14617 . . . > 1, but criterion

(19.2.14) is satisfied since

η+c = 1.46515 . . .≤ 4l

(l2 +
√

l2 +4l0l)2
= 1.49682 . . ..

As a consequence the convergence of the secant-method is guaranteed by Theorem 19.2.4.

Example 19.3.2. Let X = Y = R and let consider the real functions

F(x) = x3 −k

where k ∈ R and we are going to apply secant-method to find the solution of F(x) = 0. We

take the starting point x0 = 1 we consider the domain Ω = B(x0,1) and we let x−1 free in

order to find a relation between k and x−1 for which criterion (19.1.3) is not satisfied but

new criterion (19.2.14) is satisfied. In this case, we obtain

η = |(1−k)(1+x−1 +x2
−1)|,

l =
6

|1+x−1 +x2
−1|

,

l0 =
9

2|1+x−1 +x2
−1|

,

Taking all this data into account we obtain the following criteria:
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(i) If 55/54 < k ≤ 25/24 and

α < x−1 ≤
2−27k

2(−29+27k)
− 1

2

√
3

√
−2164−3024k +729k2

(−29+27k)2
,

where α is the smallest positive root of

p(t)−73+24k +(22+48k)t +(−111+72k)t2 +(−38+48k)t3 +(−25+24k)t4.

(ii) If 25/24 < k < 29/27 and

1 < x1 ≤
2−27k

2(−29+27k)
− 1

2

√
3

√
−2164−3024k +729k2

(−29+27k)2
.

(iii) If 55/54 < k < 25/24 and

56−27k

2(−29+27k)
+

1

2

√
3

√
−−968−108k +729k2

(−29+27k)2
≤ x−1 < α,

where α is the greatest positive root of

p(t) =−49+24k+(22+48k)t +(−111+72k)t2 +(−62+48k)t3 +(−25+24k)t4.

(iv) If 25/24 ≤ k < 29/27 and

56−27k

2(−29+27k)
+

1

2

√
3

√
−−968−108k +729k2

(−29+27k)2
≤ x−1 < 1.

(v) If 25/27 < k < 23/24 and

1 ≤ x−1 <
52−27k

2(−25+27k)
− 1

2

√
3

√
−−968+108k +729k2

(−25+27k)2
.

(vi) If 23/24 ≤ k < 53/54 and

α ≤ x−1 <
52−27k

2(−25+27k)
− 1

2

√
3

√
−−968+108k +729k2

(−25+27k)2
,

where α is the smallest positive root of

p(t) = 25+24k+(−118+48k)t +(−33+72k)t2 +(−58+48k)t3 +(−23+24k)t4.

(vii) If 25/27 < k ≤ 23/24 and

−2−27k

2(−25+27k)
+

1

2

√
3

√
−1732−2808k +729k2

(−25+27k)2
≤ x−1 < 1.
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(viii) If 23/24 < k < 53/54 and

−2−27k

2(−25+27k)
+

1

2

√
3

√

−1732−2808k +729k2

(−25+27k)2
≤ x−1 < α,

where α is the greatest positive root of

p(t) = 1+24k +(−118+48k)t +(−33+72k)t2 +(−34+48k)t3 +(−23+24k)t4.

Now we consider a case in which both criteria (19.1.3) and (19.2.14) are satisfied to

compare the majorizing sequences. We choose k = 0.99 and x−1 = 1.2 and we obtain

c = 0.2, η = 0.0364 . . ., l = 1.64835, l0 = 1.23626.

Moreover, criterion (19.1.3)

lc+2
√

lη = 0.819568 < 1,

is satisfied and criterion (19.2.14)

c+η = 0.2364 . . .≤ 0.26963 . . .=
4l

(l2 +
√

l2 +4l0l)2
,

is also satisfied. In Table 19.3.1 it is shown that {sn}, {tn} and {wn} are majorizing se-

quences and it is shown also that the tighter sequence is {sn}.

Table 19.3.1. Comparison between the sequences {sn}, {tn} and {wn}

n ‖sn+1− sn‖ ‖tn+1− tn‖ ‖wn+1−wn‖
1 0.0150308 . . . 0.0200411 . . . 0.0232399 . . .

2 0.00197814 . . . 0.00292257 . . . 0.00446203 . . .
3 0.0000890021 . . . 0.000181477 . . . 0.000339709 . . .

4 4.88677×10−7 1.53289×10−6 4.52784×10−6

5 1.16179×10−10 7.63675×10−10 4.32958×10−9

6 1.66533×10−16 3.16414×10−15 5.45120×10−14

Conclusion

We present a new semilocal convergence analysis for the secant method in order to ap-

proximate a locally unique solution of a nonlinear equation in a Banach space setting. We

showed that the new convergence criteria can be always weaker than the corresponding ones

in earlier studies such as [2, 14, 16, 18, 20, 21, 22, 23, 26, 27]. Numerical examples where

the old results cannot guarantee the convergence but our new convergence criteria can are

also provided in this chapter.
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Chapter 20

Expanding the Convergence Domain

for Chun-Stanica-Neta Family of

Third Order Methods in Banach

Spaces

20.1. Introduction

In this study we are concerned with the problem of approximating a locally unique solution

x∗ of the equation

F(x) = 0, (20.1.1)

where F is a Fréchet-differentiable operator defined on a convex subset D of a Banach space

X with values in a Banach space Y.

Many problems in computational mathematics and other disciplines can be brought in

a form like (20.1.1) using mathematical modelling [1, 3, 11, 15, 18, 19]. The solutions of

these equations can rarely be found in closed form. That is why most solution methods

for these equations are usually iterative. In particular the practice of Numerical Functional

Analysis for finding such solutions is essentially connected to Newton-like methods [1, 3,

15, 17, 18, 19]. The study about convergence of iterative procedures is normally centered

on two types: semilocal and local convergence analysis. The semilocal convergence matter

is, based on the information around an initial point, to give criteria ensuring the convergence

of the iterative procedures. While the local analysis is based on the information around a

solution, to find estimates of the radii of convergence balls. There exist many studies which

deal with the local and the semilocal convergence analysis of Newton-like methods such as

[1]-[20].

Majorizing sequences in connection to the Kantorovich theorem have been used ex-

tensively for studying the convergence of these methods [1, 2, 3, 4, 11, 15, 10]. Rall [19]

suggested a different approach for the convergence of these methods, based on recurrent

relations. Candela and Marquina [5, 6], Parida[16], Parida and Gupta [17], Ezquerro and

Hernández [7], Gutiérrez and Hernández [8, 9]. Argyros [1, 2, 3] used this idea for sev-

eral high-order methods. In particular, Kou and Li [12] introduced a third order family of
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methods for solving equation (20.1.1), when X = Y = R defined by

yn = xn −θF ′(xn)
−1F(xn), for each n = 0,1,2, · · ·

xn+1 = xn −
θ2 +θ−1

θ2
F ′(xn)

−1F(xn)−
1

θ2
F ′(xn)

−1F(yn), (20.1.2)

where x0 is an initial point and θ ∈ R−{0}. This family uses two evaluations of F and

one evaluation of F ′. Third order methods requiring one evaluation of F and two evaluation

of F ′ can be found in [1, 3, 12, 18]. It is well known that the convergence domain of

high order methods is in general very small. This fact limits the applicability of these

methods. In the present study we are motivated by this fact and recent work by Chun,

Stanica and Neta [4] who provided a semilocal convergence analysis of the third order

method (20.1.2) in a Banach space setting. Their semilocal convergence analysis is based

on recurrent relations. In Section 20.2 we show convergence of the third order method

(20.1.2) using more precise recurrent relations under less computational cost and weaker

convergence criterion. Moreover, the error estimates on the distances ‖xn+1−xn‖, ‖xn−x∗‖
are more precise and the information on the location of the solution at least as precise. In

Section 20.3 using our technique of recurrent functions we present a semilocal convergence

analysis using majorizing sequence. The convergence criterion can be weaker than the older

convergence criteria or the criteria of Section 20.2. Numerical examples are presented in

Section 20.4 that show the advantages of our work over the older works.

20.2. Semilocal Convergence I

Let U(w,ρ), U(w,ρ) stand for the open and closed ball, respectively, with center w ∈ X and

of radius ρ > 0. Let also L(X ,Y) denote the space of bounded linear operators from X into

Y.
The semilocal convergence analysis of third order method (20.1.2),given by Chun, Stan-

ica and Neta [4] is based on the following conditions. Suppose:

(C ):

(1) There exists ‖F ′(x)−F ′(y)‖ ≤ K‖x−y‖ for each x and y ∈ D;

(2)

‖F ′′(x)‖ ≤ M, for each x ∈ D;

(3)

‖F ′(x0)
−1‖ ≤ β;

(4)

‖F ′(x0)
−1F(x0)‖ ≤ η.
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They defined certain parameters and sequences by

a = Kβη,

α =
|θ2 +θ−1|+ |1−θ|

θ2
,

γ =
M

2
βη,

a0 = b0 = 1, d0 = α+ γ, b−1 = 0,

an+1 =
an

1−aandn

,

bn+1 = an+1βηcn,

kn =
|1+θ|(θ−1)2 + |1−θ|

θ2
bn +

M

2
anβb2

nη,

cn =
M

2
k2

n +K|θ|bnkn +
M

2
|θ2 −1|b2

n

and

dn+1 = αbn+1 + γan+1b2
n+1.

We suppose (C 0):

(1)

‖F ′(x0)
−1(F ′(x)−F ′(y))‖ ≤ K‖x−y‖, for each x,y ∈ D;

(2)

‖F ′(x0)
−1(F ′(x)−F ′(x0))‖ ≤ K0‖x−x0‖, for each x ∈ D;

(3)

‖F ′(x0)
−1F(x0)‖ ≤ η.

Notice that the new conditions are given in affine invariant form and the condition on the

second Fréchet-derivative has been dropped. The advantages of presenting results in affine

invariant form instead of non-affine invariant form are well known [1, 3, 11, 15, 18]. If

operator F is twice Fréchet differentiable, then (1) in (C 0) implies (2) in (C ).

In order for us to compare the old approach with the new, let us rewrite the conditions

(C ) in affine invariant form. We shall call these conditions again (C ).

(C1) ‖F ′(x0)
−1(F ′(x)−F ′(y))‖ ≤ K‖x−y‖ for each x and y ∈ D;

(C2)

‖F ′(x0)
−1F ′′(x)‖ ≤ M, for each x ∈ D;

(C4)

‖F ′(x0)
−1F(x0)‖ ≤ η.
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The parameters and sequences are defined as before but β = 1. Then, we can certainly set

K = M. Define parameters

a0 = Kη,

α0 = α,

γ0 =
K

2
η,

a0
0 = b0

0 = 1, d0
0 = α0 + γ0, b0

−1 = 0,

a0
n+1 =

1

1−K0(d0
n +d0

n−1 + · · ·+d0
0)

,

b0
n+1 = a0

n+1ηc0
n,

c0
n = K[

(k0
n)

2

2
+ |θ|b0

nk0
n +

|θ2 −1|
2

(b0
n)

2],

k0
n =

|θ+1|(θ−1)2 + |1−θ|
θ2

b0
n +

K

2
a0

n(b0
n)

2η

and

d0
n+1 = α0b0

n+1 + γ0a0
n+1(b0

n+1)
2.

We have that

K0 ≤ K (20.2.1)

holds in general and K
K0

can be arbitrarily large [1]-[3]. Notice that the center Lipschitz

condition is not an additional condition to the Lipschitz condition, since in practice the

computation of K involves the computation of K0 as a special case. We have by the defini-

tion of an+1 in turn that

an+1 =
an

1−Kηandn

=
an

1−Kηdn
an−1

1−Kηan−1dn−1

=
an(1−Kηan−1dn−1)

1−Kηan−1(dn +dn−1)

=

an−1

1−Kηan−1dn−1
(1−Kηan−1dn−1)

1−Kηan−1(dn +dn−1)

=
an−1

1−Kηan−1(dn +dn−1)

...

=
a0

1−Kηan−1(dn +dn−1 + · · ·+d0)

=
1

1−Kη(dn +dn−1 + · · ·+d0)
.

Hence, we deduce that

a0
n+1 ≤ an+1 for each n = 0,1,2, · · · . (20.2.2)
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Moreover, strict inequality holds in (20.2.2) if K0 < K. Hence, using a simple inductive

argument we also have that

b0
n+1 ≤ bn+1, (20.2.3)

c0
n ≤ cn, (20.2.4)

k0
n ≤ kn (20.2.5)

and

d0
n+1 ≤ dn+1. (20.2.6)

Lemma 20.2.1. Under the (C 0) conditions the following hold

‖F ′(xn)
−1F ′(x0)‖ ≤ a0

n,

‖F ′(xn)
−1F(xn)‖ ≤ b0

nη,

‖xn+1 −xn‖ ≤ d0
nη,

‖xn+1 −yn‖ ≤ (d0
n +2k0

n−1 +θb0
n)η.

Moreover, under the (C ) conditions the following hold

‖F ′(xn)
−1F ′(x0)‖ ≤ a0

n ≤ an,

‖F ′(xn)
−1F(xn)‖ ≤ b0

nη ≤ bnη,

‖xn+1−xn‖ ≤ d0
nη ≤ dnη,

‖xn+1−yn‖ ≤ (d0
n +2k0

n−1 +θb0
n)η ≤ (dn +2kn−1 +θbn)η.

Proof. It follows from the proof of Lemma 1 in [4] by simply noticing: the expressions

involving

(i) the second Fréchet-derivative

Z 1

0
F ′′(xn + t(yn −xn))(1− t)(yn−xn)

2dt

and
Z 1

0
F ′′(yn + t(xn+1 −yn))(1− t)(xn+1−yn)

2dt

are not needed and can be replaced, respectively, by

Z 1

0
[F ′(yn + t(xn −yn)−F ′(xn)](yn−xn)dt

and
Z 1

0
[F ′(yn + t(xn+1−yn)−F ′(yn)](xn+1−yn)dt.

Hence, condition (2) in (C ) is not needed and can be replaced by condition (1) in (C 0)

to produce the same bounds as in [4] (for K = M) (see also the proof of Theorem

20.3.2 that follows)
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(ii) The computation of the upper bounds on ‖F ′(xn)
−1F ′(x0)‖ in [4] uses condition (1)

in (C ) and the estimate

‖F ′(xn)
−1(F ′(xn)−F ′(xn+1))‖ ≤ ‖F ′(xn)

−1F ′(x0)‖K‖xn−xn+1‖
to arrive at

‖F ′(xn)
−1F ′(x0)‖ ≤ an+1, (20.2.7)

whereas we use (2) in (C 0) and estimate

‖F ′(x0)
−1(F ′(xn)−F ′(xn+1))‖ ≤ K0‖xn+1 −xn‖

≤ K0(‖xn+1−xn‖+ · · ·+‖x1 −x0‖)
≤ K0(d0

n +d0
n−1 + · · ·+d0

0)

to arrive at the estimate

‖F ′(xn)
−1F ′(x0)‖ ≤ a0

n+1, (20.2.8)

which is more precise (see also (20.2.2)).

�

Lemma 20.2.2. Suppose that

a0
1b0

1 < 1. (20.2.9)

Then, sequence {p0
n} defined by p0

n = a0
nb0

n is decreasingly convergent to 0 such that

p0
n+1 ≤ ξ2n+1

1

1

ξ1

, ξ1 := a0
1b0

1

and

d0
n ≤ (α0 + γ0)ξ2n

1

1

ξ1

.

Moreover, if

a1b1 < 1, (20.2.10)

then, sequence {pn} defined by pn = anbn is also decreasingly convergent to 0 such that

p0
n+1 ≤ pn+1 ≤ ξ2n+1 1

ξ
, ξ = a1b1,

d0
n ≤ dn ≤ (α+ γ)ξ2n 1

ξ
,

and

ξ1 ≤ ξ.

Proof. It follows from the proof of Lemma 3 in [4] by simply using {p0
n}, a0

1, b0
1, ξ1 instead

of {pn}, a1, b1, ξ, respectively. �

Next, we present the main semilocal convergence result for the third order method

(20.1.2) under the (C 0) conditions, (20.2.9) and the convergence criterion

a(α+ γ) < 1. (20.2.11)

The proof follows from the proof of Theorem 5 in [4] (with the exception of the unique-

ness of the solution part) by simply replacing the (C ) conditions and (20.2.10) by the (C 0)

conditions and (20.2.9) respectively.
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Theorem 20.2.3. Suppose that conditions (C 0), (20.2.9) and (20.2.11) hold. Moreover,

suppose that

U0
0 = U(x0, r0η) ⊂ D, (20.2.12)

where

r0 =
∞

∑
n=0

d0
n . (20.2.13)

Then, sequences {xn} generated by the third order method (20.1.2) is well defined, remains

in U0
0 for each n = 0,1,2, · · · and converges to a unique solution x∗ of equation F(x) = 0 in

U(x0,
2

K0
− r0η)

T

D. Moreover, the following estimates hold

‖xn+1 −x∗‖ ≤
∞

∑
k=n+1

d0
k η ≤ α+ γ

ξ1

η
∞

∑
k=n+1

ξ2k

1 . (20.2.14)

Proof. As already noted above, we only need to show the uniqueness part. Let y∗ ∈
U(x0,

2
K0

− r0η) be such that F(y∗) = 0. Define Q =
R 1

0 F ′(x∗ + t(y∗−x∗))dt. Using condi-

tion (2) in (C 0) we get in turn that

‖F ′(x0)
−1(F ′(x0)−Q)‖ ≤ K0

Z 1

0
‖x∗ + t(y∗−x∗)−x0‖dt

≤ K0

Z 1

0
[(1− t)‖x∗−x0‖+ t‖y∗−x0‖]dt

<
K0

2
[r0η+

2

K0

− r0η] = 1. (20.2.15)

It follows from (20.2.15) and the Banach lemma on invertible operators [1, 3, 11, 15, 18]

that Q−1 ∈ L(Y,X). Then, using the identity

0 = F(x∗)−F(y∗) = Q(x∗−y∗),

we deduce that x∗ = y∗. �

Remark 20.2.4. If K0 = K, and operator F is twice Fréchet differentiable then Lemma

20.2.1, Lemma 20.2.2 and Theorem 20.2.3 reduce to Lemma 1, Lemma 3 and Theorem 5

in [4], respectively. Otherwise i.e., if K0 < K or if the twice Fréchet differentiability of

operator F is not assumed, then our results constitute an improvement. It is worth noticing

that if K0 < K, then (20.2.10) implies (20.2.9) (but not necessarily vice versa) and ξ1 < ξ.

20.3. Semilocal Convergence II

We need to introduce some scalar sequences that shall be shown to be majorizing for the

third order methods (20.1.2) in Theorem 20.3.2.

Let K0 > 0,K > 0,η > 0 and θ∈ R−{0}. Set t0 = 0 and s0 = |θ|η. Define polynomials

f and g by

f (t) = (
K|θ|

2
+K0)t

3 +
|θ|
2

Kt2 +K(
|θ2 −1|

2|θ| − |θ|)t

−K

2

|θ2 −1|
|θ| (20.3.1)
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and

g(t) = K0t4 +
K

2θ2
[1+ |1−θ|(1+ |1−θ2|)]t3

+
K

2θ2
[|1−θ|(1+ |1−θ2|)−1]t2

+
K

θ2
|1−θ|(1+ |1−θ2|)( |θ

2 −1|
2θ2

−1)t

− K

2θ4
|1−θ||1−θ2|(1+ |1−θ2|). (20.3.2)

We have f (0) =−K
2

|θ2−1|
|θ| < 0 for θ 6=±1 and f (1) = K0 > 0 for K0 6= 0. It follows from the

intermediate value theorem that polynomial f has roots in (0,1). Denote by δ f the smallest

root of f in (0,1). Similarly, we have g(0) = − K

2θ4 |1− θ||θ2 − 1|(1 + |1− θ2|) < 0 for

θ 6= ±1 and g(1) = K0 + K

2θ2 > 0. Denote by δg the smallest root of g in (0,1). Set

δ = min{δ f ,δg}. (20.3.3)

Moreover, suppose that δ satisfies

∣∣∣∣
1−θ

θ3

∣∣∣∣(1+ |1−θ2|)+
Kη

2θ
≤ δ, (20.3.4)

0 <
K|θ|

1−K0(1+δ)s0

[
|θ2 −1|

2θ2
+

δ2

2
+δ

]
(s0 − t0) ≤ δ (20.3.5)

and

0 <
K

θ2(1−K0(1+δ)s0)
{|1−θ|(1+ |1−θ2|)

[
|θ2 −1|

2θ2
+

δ2

2
+δ

]
+

δ2

2
}(s0− t0) ≤ δ2. (20.3.6)

We shall assume from now on that δ satisfies conditions (20.3.3)-(20.3.6). These conditions

shall be referred to as the (4) conditions. Moreover, define scalar sequences {tn}, {sn} by

t0 = 0, s0 = t0 +θη,

t1 = s0 +

[ |1−θ|
|θ3|

(1+ |1−θ2|)+
(s0− t0)K

2θ2

]
(s0 − t0)

for each n = 0,1,2, · · · .

sn+1 = tn+1 +
K|θ|

1−K0tn+1[ |1−θ2|
2θ2

(sn− tn)
2 +

(tn+1− sn)
2

2
+(sn − tn)(tn+1− sn)

]
(20.3.7)
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tn+2 = sn+1 +
K

θ2(1−K0tn+1)

{
|1−θ|(1+ |1−θ2|)

[ |1−θ2|
2θ2

(sn− tn)
2 +

(tn+1− sn)
2

2
+(sn − tn)(tn+1− sn)

]

+
1

2
(sn+1− tn+1)

2}. (20.3.8)

Then, we can show the following auxiliary result for majorizing sequences {tn}, {sn} under

the (4) conditions.

Lemma 20.3.1. Suppose that the (4) conditions hold. Then, sequence {tn}, {sn} defined by

(20.3.7) and (20.3.8) are increasingly convergent to their unique least upper bound denoted

by t∗ which satisfies

θη ≤ t∗ ≤ t∗∗ :=
θη

1−δ
. (20.3.9)

Moreover, the following estimates hold for each n = 0,1,2, · · · .

0 < sn − tn ≤ δnθη (20.3.10)

and

0 < tn+1− sn ≤ δn+1θη. (20.3.11)

Proof. We shall show estimates (20.3.10) and (20.3.11) using induction. If n = 0, (20.3.10)

holds by the definition of t0 and s0, whereas (20.3.11) holds by (20.3.4). We then have that

t1 ≤ s0 +δs0 = (1+δ)s0 =
1−δ2

1−δ
s0 < t∗∗. (20.3.12)

If n = 1, estimates (20.3.10) and (20.3.11) hold by (20.3.5), (20.3.6), (20.3.12) and

(20.3.10), (20.3.11) for n = 0. Suppose that (20.3.10) and (20.3.11) hold for all m ≤ n.

Then, we have that

tm+1 ≤ sm +δm+1(s0− t0) ≤ tm +δm(s0− t0)

δm+1(s0 − t0) ≤ ·· · ≤ t0 +(s0 − t0)+δ(s0− t0)

+ · · ·+δm+1(s0 − t0) =
1−δm+2

1−δ
(s0 − t0) < t∗∗. (20.3.13)

Next, we shall show (20.3.10) for m + 1 replacing n. We have by the induction hypotheses

and (20.3.13) that

sm+1− tm+1 ≤ K|θ|
1−K0

1−δm+2

1−δ[ |θ2 −1|
θ2

(δm(s0 − t0))
2 +

(δm(s0 − t0))
2

2
+δ2m+1(s0− t0)

2

]

must be smaller or equal to δm+1(s0− t0), or

K|θ|
1−K0

1−δm+2

1−δ

[
|θ2 −1|

θ2
δm +

δm+2

2
+δm+1

]
(s0− t0) ≤ δ. (20.3.14)
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Estimate (20.3.14) motivates us to define recurrent polynomials fm on (0,1) by

fm(t) = K

[ |θ|
2

tm+2 + |θ|tm+1 +
|θ2 −1|

2|θ| tm

]
(s0 − t0)

+K0t(1+ t + · · ·+ tm+1)(s0− t0)− t. (20.3.15)

We need a relationship between two consecutive polynomials fm. Using (20.3.15) and

(20.3.1) by direct algebraic manipulation we get that

fm+1(t) = fm(t)+ f (t)tm−1(s0− t0). (20.3.16)

Evidently, condition (20.3.14) is satisfied, if

fm(δ) ≤ 0. (20.3.17)

We also have from (20.3.17) that

fm+1(δ)≤ fm(δ), (20.3.18)

since f (δ) ≤ 0. It then, follows from (20.3.17) and (20.3.18) that (20.3.17) holds, if

f0(δ) ≤ 0, (20.3.19)

which is true by (20.3.5). Hence, we showed (20.3.10) for m+1 replacing n. Next, we shall

show (20.3.11) for m+1 replacing n. We have in turn that

sm+2 − sm+1 ≤ K

θ2(1−K0
1−δm+2

1−δ )
{|1−θ|(1+ |θ2 −1|)

[
|θ2 −1|

2θ2
(δm(s0− t0))

2 +
(δm+1(s0 − t0))

2

2
+δ2m+1(s0− t0)

2

]

+(δm+1(s0− t0))
2}

must be smaller or equal to δm+2(s0 − t0). As in the preceding case we are motivated to

define polynomials gm on [0,1] by

gm(t) = K{|1−θ|(1+ |θ2 −1|)
θ2

[ |θ2 −1|
θ2

tm +
tm+2

2
+ tm+1

]
+

tm+2

2θ2
}

×(s0 − t0)+ t2K0(1+ t + · · ·+ tm+1)(s0− t0)− t2. (20.3.20)

Using (20.3.20) and (20.3.2) by direct algebraic manipulation we get that

gm+1(t) = gm(t)+g(t)tm(s0− t0). (20.3.21)

Condition (20.3.11) is satisfied, if

gm(δ) ≤ 0. (20.3.22)

We also have from (20.3.21) and (4) that

gm+1(δ)≤ gm(δ), (20.3.23)
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since g(δ)≤ 0. Hence, (20.3.22) is satisfied, if

g0(δ)≤ 0, (20.3.24)

which is true by (20.3.6). The induction for (20.3.11) is completed. It then, follows that

tm+2 ≤
1−δm+3

1−δ
s0 < t∗∗. (20.3.25)

Hence, sequences {tn}, {sn} are increasing, bounded above by t∗∗ and as such they converge

to their unique least upper bound t∗ which satisfies (20.3.9). �

We can show the main semilocal convergence result for the third order method (20.1.2)

under the (C 0) and (4) conditions using {tn} and {sn} as majorizing sequences.

Theorem 20.3.2. Suppose that

U(x0, t
∗) ⊂ D, (20.3.26)

the (C 0) and (4) conditions hold. Then, sequences {xn}, {yn} generated by the third order

method (20.1.2) are well defined, remain in U(x0, t
∗) for each n = 0,1,2, · · · and converge to

a unique solution x∗ of equation F(x)= 0 in U(x0, t
∗)∩D. Moreover the following estimates

hold for each n = 0,1,2, · · · .

‖yn −xn‖ ≤ sn − tn, (20.3.27)

‖xn+1−yn‖ ≤ tn+1− sn (20.3.28)

‖xn+1−xn‖ ≤ tn+1− tn (20.3.29)

and

‖xn −x∗‖ ≤ t∗− tn. (20.3.30)

Furthermore, if there exists R > t∗ such that

K0(t
∗ +R) < 2, (20.3.31)

then, the point x∗ is the only solution of equation F(x) = 0 in U(x0,R).

Proof. We shall first show (20.3.27) and (20.3.28) using induction. We have by (20.1.2)

and (20.3.7) that

‖y0 −x0‖ = |θ|‖F ′(x0)
−1F(x0)‖ ≤ |θ|η = s0 = s0 − t0.

Hence, (20.3.27) holds for n = 0. It follows from the first substep of (20.1.2) that

F(y0) = F(y0)−θF(x0)−F ′(x0)(y0−x0)

= (1−θ)F(x0)

+

Z 1

0
[F ′(x0 + t(y0 −x0))−F ′(x0)](y0−x0)dt. (20.3.32)
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Composing (20.3.32) by F ′(x0)
−1 and using (2), (3) in (C 0) and (20.3.7)

‖F ′(x0)
−1F(y0)‖ ≤ |1−θ|‖‖F ′(x0)

−1F(x0)‖

+‖
Z 1

0
[F ′(x0 + t(y0 −x0))−F ′(x0)](y0−x0)dt

≤ |1−θ|
|θ| (s0− t0)+

K0

2
‖y0 −x0‖2

≤ (
|1−θ|
|θ| +

K0

2
(s0− t0))(s0− t0). (20.3.33)

Subtracting the first from the second substep in (20.1.2) we get that

x1 −y0 = −(θ+1)(θ−1)2

θ2
F ′(x0)

−1F(x0)−
1

θ2
F ′(x0)

−1F(y0) (20.3.34)

Hence, using (20.3.33) and (20.3.34), we get that

‖x1 −y0‖ =
|θ+1||θ−1|2

θ2
‖F ′(x0)

−1F(x0)‖+
1

θ2
‖F ′(x0)

−1F(y0)‖

≤ |θ+1||θ−1|2
θ2

(s0− t0)+
1

θ2
(
|1−θ|
|θ| +

K

2
(s0− t0))(s0− t0)

= t1 − s0, (20.3.35)

which shows (20.3.28) for n = 0. Then, (20.3.29) holds for n = 0, since

‖x1 −x0‖ ≤ ‖x1 −y0‖+‖y0 −x0‖ ≤ t1 − s0 + s0 − t0 = t1− t0 ≤ t∗.

Then, we have x1 ∈U(x0, t
∗). Notice that K0t∗ < 1 from the proof of Lemma 20.3.1. Let us

suppose x ∈ U(x0, t
∗). Then, using (2) in (C 0) we have that

‖F ′(x0)
−1(F ′(x)−F ′(x0))‖ ≤ K0‖x−x0‖ ≤ K0t∗ < 1. (20.3.36)

It follows from (20.3.36) and the Banach lemma that F ′(x)−1 ∈ L(Y,X) and

‖F ′(x1)
−1F ′(x0)‖ ≤

1

1−K0‖x1 −x0‖
≤ 1

1−K0t1
. (20.3.37)

Suppose that (20.3.27)-(20.3.29) hold for all m ≤ n and xm ∈U(x0, t
∗). Using the first step

in (20.1.2) we get that

F(ym) = F(ym)−θF(xm)−F ′(xm)(ym −xm)

= (1−θ)F(xm)

+

Z 1

0
[F ′(xm + t(ym −xm))−F ′(xm)](ym−xm)dt. (20.3.38)

Subtracting the first step in (20.1.2) from the second step to obtain

F ′(xm)(xm+1 −ym) =
θ3 −θ2 −θ+1

θ2
F(xm)− 1

θ2
F(ym). (20.3.39)
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We also have by (20.3.38) that

F(xm+1) = F ′(xm)(xm+1−ym)+F(ym)+[F ′(ym)−F ′(xm)](xm+1−ym)

+F(xm+1)−F(ym)−F ′(ym)(xm+1−ym)

=
1−θ

θ2
F(xm)− 1

θ2
F(ym)

+
Z 1

0
[F ′(xm + t(ym −xm))−F ′(xm)](ym−xm)dt

+
Z 1

0
[F ′(ym + t(xm+1 −ym))−F ′(ym)](xm+1−ym)dt

+[F ′(ym)−F ′(xm)](xm+1−ym). (20.3.40)

Hence, we get by (20.3.40) that

‖F ′(x0)
−1F(xm+1)‖ ≤ K

[ |θ2 −1|
2θ2

‖ym −xm‖2

+
‖xm+1 −ym‖2

2
+‖ym −xm‖‖xm+1−ym‖

]

≤ K

[ |θ2 −1|
2θ2

(sm − tm)2

+
(tm+1− sm)2

2
+(sm − tm)(tm+1− sm)

]
. (20.3.41)

Then, we get that

‖ym+1 −xm+1‖ ≤ ‖F ′(xm+1)
−1F ′(x0)‖‖F ′(x0)

−1F(xm+1)‖

≤ K

1−K0tm+1

[ |θ2 −1|
2θ2

(sm − tm)2

+
(tm+1− sm)2

2
+(sm − tm)(tm+1− sm)

]
= sm+1− tm+1,

where, we used (20.3.37) for x = xm+1 and

‖xm+1−x0‖ ≤ ‖xm+1 −xm‖+ · · ·+‖x1 −x0‖ ≤ tm+1− tm + · · ·+ t1 − t0 = tm+1.

Hence, we showed (20.3.27). Then, we have by (20.3.39) that

xm+1 −ym =
θ3 −θ2 −θ +1

θ2
F ′(xm)−1F(xm)− 1

θ2
F ′(xm)−1F(ym). (20.3.42)
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It follows from (20.3.42) that

‖xm+2−ym+1‖ ≤ K

1−K0tm+1

[
|1+θ|(θ−1)2

θ2
‖F ′(x0)

−1F(xm+1)‖

+
1

θ2
‖F ′(x0)

−1F(ym+1)‖]

≤ K

θ2(1−K0tm+1)

[
|1+θ|(θ−1)2(

|θ2 −1|
2θ2

(sm − tm)2

+
(tm+1− sm)2

2
+(sm − tm)(tm+1− sm))

+|1−θ|( |θ
2 −1|
2θ2

(sm − tm)2

+
(tm+1− sm)2

2
+(sm − tm)(tm+1− sm)))

+
(sm+1− tm+1)

2

2

]

= tm+2− sm+1.

Hence, we showed (20.3.28). Then, we have that

‖xm+2 −xm+1‖ ≤ ‖xm+2 −ym+1‖+‖ym+1 −xm+1‖
≤ tm+2− sm+1 + sm+1 − tm+1

= tm+2− tm+1,

which shows (20.3.29). We also have that

‖xm+2 −x0‖ ≤ ‖xm+2−xm+1‖+‖xm+1 −xm‖+ · · ·+‖x1 −x0‖
≤ tm+2− tm+1 + tm+1 − tm + · · ·+ t1 − t0

= tm+2 < t∗.

Hence, we get xm+2 ∈U(x0, t
∗).

We showed in Lemma 20.3.1 that sequences {tn}, {sn} are complete. Hence, it follows

from (20.3.27)-(20.3.29) that sequences {xn}, {yn} are complete in a Banach space X and

as such they converge to some x∗ ∈ U(x0, t
∗) (since U(x0, t

∗) is a closed set.) By letting

m → ∞ in (20.3.41), we obtain F(x∗) = 0. Estimate (20.3.30) follows from (20.3.29) by

using standard majorization techniques [1, 3, 11, 15, 18, 19]. Let us show uniqueness, first

in U(x0, t
∗)∩D. Let y∗ ∈U(x0, t

∗) be such that F(y∗) = 0. Set Q =
R 1

0 F ′(x∗+t(y∗−x∗))dt.
Then, using (2) in (C 0) we get that

‖F ′(x0)
−1(F ′(x0)−Q)‖ ≤ K0

Z 1

0
[(1− t)‖x∗+ t(y∗−x∗)−x0‖dt

≤ K0

Z 1

0
[(1− t)‖x∗−x0‖+ t‖y∗−x∗)−x0‖dt

≤ K0t∗ < 1.
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It follows that Q−1 exists. Then, from the identity 0 = F(x∗)− F(y∗) = Q(x∗− y∗) we

deduce that x∗ = y∗. Similarly, if F(y∗) = 0 and y∗ ∈ U(x0,R), we have that

‖F ′(x0)
−1(F ′(x0)−Q)‖ ≤ K0

2
(R+ t∗) < 1,

by (20.3.31). Hence, again we deduce that x∗ = y∗. �

Remark 20.3.3. (a) It follows from the proof of Theorem 20.3.2 that sequences

{t̄n},{s̄n} defined by

t̄0 = 0, s̄0 = t̄0 +θη,

t̄1 = s̄0 +[
|1−θ

|θ3|
(1+ |1−θ2|)+

(s̄0− t̄0)K0

2θ2
](s̄0− t̄0),

s̄1 = t̄1 +
|θ|

1−K0 t̄1
[
K

2

|θ2 −1|
θ2

(s̄0− t̄0)
2

K

2
(t̄1− s̄0)

2 +K0(s̄0 − t̄0)(t̄1− s̄0)],

s̄n+1 = t̄n+1 +
|θ|

1−K0t̄n+1

[
|θ2 −1|

2θ2
(s̄n− t̄n)

2

(t̄n+1− s̄n)
2

2
+(s̄n − t̄n)(t̄n+1− s̄n)],

t̄n+2 = s̄n+1 +
K

θ2(1−K0t̄n+1)
{|1−θ|(1+ |1−θ2|)[ |θ

2 −1|
2θ2

(s̄n− t̄n)
2

(t̄n+1− s̄n)
2

2
+(s̄n − t̄n)(t̄n+1− s̄n)]

1

2
(s̄n+1− t̄n+1)

2} for each n = 0,1,2, · · · .

Then, a simple induction argument shows that

s̄n ≤ sn,

t̄n ≤ tn,

s̄n − t̄n ≤ sn − tn,

t̄n+1− s̄n ≤ tn+1− sn

and

t̄∗ = lim
n→∞

t̄n ≤ t∗.

Clearly, {t̄n}, {s̄n}, t̄∗ can replace {tn}, {sn}, t∗ in Theorem 20.3.2.

(b) The limit point t∗ can be replaced by t∗∗ given in closed form by (20.3.9).

(c) Criteria (4) or (20.2.9) and (20.2.11) are sufficient for the convergence of the third

order method (20.1.2). However, these criteria are not also necessary. In practice,

we shall test to see which of these criteria are satisfied (if any) and then use the best

possible error bounds and uniqueness results (see also the numerical examples in the

next section).
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20.4. Numerical Examples

Example 20.4.1. Let x ∈ D,X = Y = R, x0 = 1 and D = U(1,1). Define function F on D

by

F(x) = x3 −0.49. (20.4.1)

Then, we get that

β =
1

3
η = 0.17, M = 12.

Now choosing θ = 1.15 we obtain that

a = 0.68, α = 0.68, γ = 0.34

and as a consequence a1b1 = 134.091≤ 1 condition (20.2.9) is violated. Hence, there is no

guarantee under the conditions given in [4] that sequence {xn} converges to x∗. Calculating

now δ f and δg, the smallest solutions of the polynomials f (t) and g(t) given in (20.3.1) and

(20.3.2) respectively between 0 and 1, we obtain that

δ = min{δ f ,δg} = .4104586 . . .

Moreover, we observe that the ∆ conditions are satisfied since

∣∣∣∣
1−θ

θ3

∣∣∣∣(1+ |1−θ2|)+
Kη

2θ
= .278261 . . .≤ δ,

0 <
K|θ|

1−K0(1+δ)s0

[
|θ2 −1|

2θ2
+

δ2

2
+δ

]
(s0− t0) = .360324 . . .≤ δ

and

0 <
K

θ2(1−K0(1+δ)s0)
{|1−θ|(1+ |1−θ2|)

[
|θ2 −1|

2θ2
+

δ2

2
+δ

]
+

δ2

2
}(s0− t0)

= .136162 . . .≤ .168476 . . .= δ2.

Consequently, convergence to the solution is guaranteed by Theorem 20.3.2. Moreover,

the computational order of convergence (COC) is shown in Table 20.4.1. Here (COC) is

defined by

ρ ≈ ln

(‖xn+1−x?‖∞

‖xn −x?‖∞

)
/ ln

( ‖xn −x?‖∞

‖xn−1 −x?‖∞

)
, n ∈ N,

The Table 20.4.1 shows the (COC).

Example 20.4.2. Let X = Y = C [0,1], the space of continuous functions defined in [0,1]

equipped with the max-norm. Let Ω = {x ∈C [0,1];‖x‖≤ R}, such that R > 1 and F defined

on Ω and given by

F(x)(s) = x(s)− f (s)−λ

Z 1

0
G(s, t)x(t)3 dt, x ∈C[0,1], s ∈ [0,1],
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Table 20.4.1. COC for Example 1 using θ = 1.15

n COC

1 2.73851

2 2.99157

3 2.99999

4 3.00000

5 3.00000

ρ = 3.00000

where f ∈ C [0,1] is a given function, λ is a real constant and the kernel G is the Green

function

G(s, t) =

{
(1− s)t, t ≤ s,

s(1− t), s ≤ t.

In this case, for each x ∈ Ω, F ′(x) is a linear operator defined on Ω by the following

expression:

[F ′(x)(v)](s) = v(s)−3λ
Z 1

0
G(s, t)x(t)2v(t) dt, v ∈ C[0,1], s ∈ [0,1].

If we choose x0(s) = f (s)= 1, it follows ‖I−F ′(x0)‖≤ 3|λ|/8. Thus, if |λ|< 8/3, F ′(x0)
−1

is defined and

‖F ′(x0)
−1‖ ≤ 8

8−3|λ| .

Moreover,

‖F(x0)‖ ≤
|λ|
8

,

‖F ′(x0)
−1F(x0)‖ ≤

|λ|
8−3|λ| .

On the other hand, for x,y ∈ Ω we have

[(F ′(x)−F ′(y))v](s) = 3λ

Z 1

0
G(s, t)(x(t)2−y2(t))v(t) dt

and for x ∈ Ω we get in turn that

‖F ′′(x)‖ ≤ 6|λ|
8

.

Consequently,

‖F ′(x)−F ′(y)‖ ≤ ‖x−y‖3|λ|(‖x‖+‖y‖)
8

≤ ‖x−y‖6R|λ|
8

,

‖F ′(x)−F ′(1)‖ ≤ ‖x−1‖1+3|λ|(‖x‖+1)

8
≤ ‖x−1‖1+3(1+R)|λ|

8
.
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Choosing λ = 1.5, R = 4.4 and θ = 1.1 we have

β = 0.677966 . . .,

η = 0.127119 . . .,

M = 4.95,

a = 0.426602 . . .,

α = 1.16529 . . .,

and

γ = 0.213301 . . .

So, as a1b1 = 1.25402 ≤ 1, condition (20.2.9) is violated. Hence, there is no guarantee

under the conditions given in [4] that sequence {xn} converges to x∗. Calculating now δ f

and δg, the smallest solutions of the polynomials f (t) and g(t) given in (20.3.1) and (20.3.2)

respectively between 0 and 1, we obtain that

δ = min{δ f ,δg} = 0.370693 . . .

Moreover, we observe that the ∆ conditions are satisfied since

∣∣∣∣
1−θ

θ3

∣∣∣∣(1+ |1−θ2|)+
Kη

2θ
= 0.284819 . . .≤ δ,

0 <
K|θ|

1−K0(1+δ)s0

[
|θ2 −1|

2θ2
+

δ2

2
+δ

]
(s0− t0) = 0.334767 . . .≤ δ

and

0 <
K

θ2(1−K0(1+δ)s0)
{|1−θ|(1+ |1−θ2|)

[
|θ2 −1|

2θ2
+

δ2

2
+δ

]
+

δ2

2
}(s0− t0)

= 0.0871515 . . .≤ 0.137413 . . .= δ2.

Consequently, convergence to the solution is guaranteed by Theorem 20.3.2.
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Chapter 21

Local Convergence of Modified

Halley-Like Methods with Less

Computation of Inversion

21.1. Introduction

In this chapter we are concerned with the problem of approximating a solution x∗ of the

nonlinear equation

F(x) = 0, (21.1.1)

where F is a Fréchet-differentiable operator defined on a subset D of a Banach space X with

values in a Banach space Y.

Many problems in computational sciences and other disciplines can be brought in a

form like (21.1.1) using mathematical modeling [3]. The solutions of equation (21.1.1) can

rarely be found in closed form. That is why most solution methods for these equations are

usually iterative. In particular, the practice of Numerical Functional Analysis for finding

such solution is essentially connected to Newton-like methods [1]-[20]. The study about

convergence matter of iterative procedures is usually based on two types: semilocal and

local convergence analyses. The semilocal convergence matter is, based on the information

around an initial point, to give conditions ensuring the convergence of the iterative proce-

dure; while the local one is, based on the information around a solution, to find estimates

of the radii of convergence balls. There exist many studies which deal with the local and

semilocal convergence analyses of Newton-like methods such as [1]-[20].

We present a local convergence analysis for the modified Halley-Like Method [30] de-

fined for each n = 0,1,2, · · · by

yn = xn −F ′(xn)
−1F(xn),

un = xn −θF ′(xn)
−1F(xn), (21.1.2)

= yn +(1−θ)F ′(xn)
−1F(xn),

zn = yn − γAθ,nF ′(xn)
−1F(xn),

xn+1 = zn −αBθ,nF ′(xn)
−1F(zn),
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where x0 is an initial point, α,γ,θ ∈ (−∞,∞) − {0} are given parameters, Hθ,n =
1
θF ′(xn)

−1(F ′(un)−F ′(xn)), Aθ,n = I − 1
2 Hθ,n(I − 1

2 Hθ,n) and Bθ,n = I −H1,n + H2
θ,n. The

semilocal convergence of method (21.1.2) was studied in [30] in the special case when

α = γ = 1 and θ ∈ [0,1]. Moreover, if γ = 1, α = 0 and θ ∈ (0,1], the semilocal conver-

gence of the resulting method (21.1.2) was given in [30].

The semilocal convergence results in [30] were given in a non-affine invariant form.

However, the results obtained in our chapter are given in affine invariant form. The sufficient

semilocal convergence conditions (given in affine invariant form) used in [30] are (C ):

(C1) There exists F ′(x0)
−1 ∈ L(Y,X) and ‖F ′(x0)

−1‖ ≤ β;

(C2)

‖F ′(x0)
−1F(x0)‖ ≤ β1;

(C3)

‖F ′(x0)
−1F ′′(x)‖ ≤ β2 for each x ∈ D;

(C4)

‖F ′(x0)
−1(F ′′(x)−F ′′(y))‖ ≤ β3‖x−y‖q

for each x,y ∈ D, and some q ∈ [0,1].

Under the (C ) conditions for α = γ = 1 and θ ∈ (0,1] the convergence order was shown

to be 3 + 2q in [30]. Moreover, for γ = 1, α = 0 and θ ∈ (0,1] the convergence order was

shown to be 2+q in [10].

Similar conditions have been used by several authors on other high convergence or-

der methods [1]-[20]. The corresponding conditions for the local convergence analysis are

given by simply replacing x0 by x∗ in the preceding (C ) conditions. These conditions how-

ever are very restrictive. As a motivational example, let us define function f on D = [−1
2
, 5

2
]

by

f (x) =

{
x3 lnx2 +x5 −x4, x 6= 0

0, x = 0

Choose x∗ = 1. We have that

f ′(x) = 3x2 lnx2 +5x4 −4x3 +2x2, F ′(1) = 3,

f ′′(x) = 6x lnx2 +20x3 −12x2 +10x

f ′′′(x) = 6lnx2 +60x2 −24x+22.

Then, e.g, function f cannot satisfy condition (C4), say for q = 1, since function f ′′′ is un-

bounded on D. In the present chapter we only use hypotheses on the first Fréchet derivative

(see conditions (21.2.12)-(21.2.15)). Notice that they used θ ∈ (0,1], whereas in this chap-

ter θ can belong in a wider than (0,1] interval and γ = α = 1 in [30]. This way we expand

the applicability of method (21.1.2).

The chapter is organized as follows. The local convergence of method (21.1.2) is given

in Section 21.2, whereas the numerical examples are given in Section 21.3. Finally, some

remarks are given in the concluding Section 21.4.
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21.2. Local Convergence Analysis

We present the local convergence analysis of method (21.1.2) in this section. Denote by

U(v,ρ),Ū(v,ρ) the open and closed balls, respectively, in X of center v ∈ X and of radius

ρ > 0.
Let L0 > 0, L > 0, θ ∈ (−∞,∞)−{0}, α, γ ∈ (−∞,∞) and M > 0 be given parameters.

Define functions on the interval [0, 1
L0

) by

g1(r) =
Lr

2(1−L0r)
,

g2(r) = g1(r)+
M|1−θ|
1−L0r

,

g3(r) =
L0(1+g2(r))

2|θ|(1−L0r)
,

g4(r) = 1+g3(r)r +g2
3(r)r2,

g5(r) = g1(r)+
|γ|Mg4(r)

1−L0r
,

g6(r) = 1+2g1,3(r)r +4g2
3(r)r2,

g1,3(r) =
L0(1+g1(r))

2(1−L0r)

and

g7(r) = [1+
|α|Mg6(r)

1−L0r
]g5(r).

Moreover, define parameter

r2 =
2(1−M|1−θ|)

2L0 +L
.

Suppose

M|1−θ|< 1.

Then, it follows from the definition of functions g1 and g2 that

0 < g1(r) < 1, and 0 < g2(r) < 1, for each r ∈ (0, r2).

Evidently, g5(r) ∈ (0,1), if for each r ∈ (0, r5) and r5 < 1
L0

to be determined, we have that

0 < g1(r)+
|γ|g4(r)M

1−L0r
< 1 for each r ∈ (0, r5).

Define function p5 on the interval [0, 1
L0

] by

p5(r) = |γ|Mg4(r)− (1−L0r)(1−g1(r)).

We have that

p5((
1

L0

)−) = |γ|Mg4((
1

L0

)−) > 0.
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Suppose that

|γ|M < 1.

Then, we have that

p5(0) = M|γ|−1 < 0.

It follows from the intermediate value theorem that function p5 has zeros in the interval

(0, 1
L0

). Denote by r5 the smallest such zero. Then, we have that

p5(r) < 0 ⇒ 0 < g5(r) < 1 for each r ∈ (0, r5).

Similarly, function g7 ∈ (0,1) for each r ∈ (0, r7) and r7 < 1
L0

to be determined, if function

p7(r) ∈ (0,1) for each r ∈ [0, r7], where

p7(r) = (1−L0r + |α|Mg6(r))g5(r)− (1−L0r).

We get that

p7((
1

L0

)−) = |γ|Mg6((
1

L0

)−)g5((
1

L0

)−) > 0.

and

p7(0) = (1+ |α|Mg6(0))|γ|g5(0)−1 = (1+ |α|M)|γ|M−1.

Suppose that

(1+ |α|M)|γ|M < 1.

Then, we have p7(0)< 0. It follows that function p7 has zeros in the interval (0, 1
L0

). Denote

by r7 the smallest such zero. Then, we obtain that

p7(0) < 0 ⇒ 0 < g7(r) < 1, for each r ∈ (0, r7).

Set

r∗ = min{r2, r5, r7}. (21.2.1)

Then, we have that

0 < g1(r) < 1, (21.2.2)

0 < g2(r) < 1 (21.2.3)

0 < g3(r) (21.2.4)

0 < g4(r) (21.2.5)

0 < g5(r) < 1 (21.2.6)

0 < g6(r) (21.2.7)

and

0 < g7(r) < 1, for each r ∈ (0, r∗). (21.2.8)

Next, we present the local convergence analysis of method (21.1.2).
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Theorem 21.2.1. Let F : D ⊆ X → Y be a Fréchet-differentiable operator. Suppose that

there exist x∗ ∈ D, parameters L0 > 0,L > 0, M > 0, θ ∈ (−∞,∞)−{0} and α, γ ∈ (−∞,∞)
such that for each x ∈ D

M|1−θ|< 1, (21.2.9)

M|γ|< 1, (21.2.10)

(1+ |α|M)|γ|M < 1, (21.2.11)

F(x∗) = 0, F ′(x∗)−1 ∈ L(Y,X), (21.2.12)

‖F ′(x∗)−1(F ′(x)−F ′(x∗))‖ ≤ L0‖x−x∗‖, (21.2.13)

‖F ′(x∗)−1(F(x)−F(x∗)−F ′(x)(x−x∗)‖ ≤ L

2
‖x−x∗‖2, (21.2.14)

‖F ′(x∗)−1F ′(x)‖ ≤ M (21.2.15)

and

Ū(x∗, r∗) ⊆ D, (21.2.16)

where r∗ is given in (21.2.1). Then, the sequence {xn} generated by method (21.1.2) for

x0 ∈U(x∗, r∗) is well defined, remains in U(x∗, r∗) for each n = 0,1,2, · · · and converges to

x∗. Moreover, the following estimates hold for each n = 0,1,2, · · · ,

‖yn −x∗‖ ≤ g1(‖xn −x∗‖)‖xn−x∗‖ < ‖xn −x∗‖ < r∗, (21.2.17)

‖un −x∗‖ ≤ g2(‖xn−x∗‖)‖xn−x∗‖ < ‖xn −x∗‖, (21.2.18)

‖Hθ,n‖ ≤ 2g3(‖xn−x∗‖)‖xn−x∗‖, (21.2.19)

‖Aθ,n‖ ≤ g4(‖xn −x∗‖) (21.2.20)

‖zn−x∗‖ ≤ g5(‖xn −x∗‖)‖xn −x∗‖ < ‖xn−x∗‖, (21.2.21)

‖Bθ,n‖ ≤ g6(‖xn −x∗‖) (21.2.22)

and

‖xn+1−x∗‖ ≤ g7(‖xn−x∗‖)‖xn−x∗‖ < ‖xn −x∗‖. (21.2.23)

where the ”g” functions are defined above Theorem 21.2.1.

Proof. Using (21.2.13), the definition of r∗ and the hypothesis x0 ∈U(x∗, r∗) we get that

‖F ′(x∗)−1(F ′(x0)−F ′(x∗))‖ ≤ L0‖x0 −x∗‖< L0r∗ < 1. (21.2.24)

It follows from (21.2.24) and the Banach Lemma on invertible operators [3, ?] that

F ′(x0)
−1 ∈ L(Y,X) and

‖F ′(x0)
−1F ′(x∗)‖ ≤ 1

1−L0‖x0 −x∗‖ <
1

1−L0r∗
. (21.2.25)

Hence, y0 and u0 are well defined. Using the first substep in method (21.1.2) for n = 0,
(21.2.2), (21.2.14), (21.2.25) and the definition of function g1 we obtain in turn that

y0 −x∗ = x0 −x∗−F ′(x0)
−1F(x0)

= −F ′(x0)
−1F ′(x∗)F ′(x∗)−1[F(x0)−F(x∗)−F ′(x0)(x0−x∗)]



378 Ioannis K. Argyros and Á. Alberto Magreñán

so,

‖y0 −x∗‖ ≤ ‖F ′(x0)
−1F ′(x∗)‖‖F′(x∗)−1[F(x0)−F(x∗)−F ′(x0)(x0−x∗)]‖

≤ L‖x0 −x∗‖2

2(1−L0‖x0 −x∗‖)
= g1(‖x0 −x∗‖)‖x0−x∗‖ < ‖x0 −x∗‖ < r∗,

which shows (21.2.17) for n = 0. We also have from the second substep of method (21.1.2)

for n = 0, (21.2.9), (21.2.15), (21.2.17) and the definition of functions g1 and g2 that

‖u0−x∗‖ ≤ ‖y0 −x∗‖+ |1−θ|‖F ′(x0)
−1F ′(x∗)‖

×‖
Z 1

0
F ′(x∗ + t(x0 −x∗)dt‖‖x0−x∗‖

≤ [g1(‖x0 −x∗‖)+
M|1−θ|

1−L0‖x0 −x∗‖ ]‖x0 −x∗‖

= g2(‖x0 −x∗‖)‖x0−x∗‖ < ‖x0 −x∗‖ < r∗, (21.2.26)

which shows (21.2.18) for n = 0.
Next, we need an estimate on 1

2
‖Hθ,0‖. We have from (21.2.4), (21.2.13), (21.2.25),

(21.2.26) and the definition of functions g2 and g3 that

1

2
‖Hθ,0‖ ≤ 1

2|θ|‖F ′(x0)
−1F ′(x∗)‖(‖F′(x∗)−1(F ′(u0)−F ′(x∗))‖

+‖F ′(x∗)−1(F ′(x0)−F ′(x∗))‖)

≤ L0(‖u0−x∗‖+‖x0 −x∗‖)
2|θ|(1−L0‖x0 −x∗‖)

≤ L0(‖x0−x∗‖+g2(‖x0−x∗‖)‖x0−x∗‖)
2|θ|(1−L0‖x0 −x∗‖)

≤ L0(1+g2(‖x0 −x∗‖))‖x0−x∗‖
2|θ|(1−L0‖x0 −x∗‖)

= g3(‖x0 −x∗‖)‖x0 −x∗‖, (21.2.27)

which shows (21.2.19) for n = 0. We also need an estimate on ‖Aθ,0‖. It follows from

(21.2.27) and the definition of Aθ,0, g3, g4 that

‖Aθ,0‖ ≤ 1+
1

2
‖Hθ,0‖+

1

4
‖Hθ,0‖2

≤ 1+g3(‖x0−x∗‖)‖x0−x∗‖+g2
3(‖x0−x∗‖)‖x0−x∗‖2

= g4(‖x0−x∗‖), (21.2.28)

which shows (21.2.20) for n = 0. Then, from the third substep of method (21.1.2) for n = 0,
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(21.2.19), (21.2.20), (21.2.28) the definition of functions g1, g5 and radius r∗, we have that

‖z0−x∗‖ ≤ ‖y0 −x∗‖+ |γ|‖Aθ,0‖‖F ′(x0)
−1F ′(x∗)‖

‖
Z 1

0
F ′(x∗)−1F ′(x∗ + t(x0 −x∗)dt‖‖x0−x∗‖

≤ [g1(‖x0−x∗‖)+
M|γ|g4(‖x0 −x∗‖)

1−L0‖x0−x∗‖ ]‖x0−x∗‖

= g5(‖x0 −x∗‖)‖x0 −x∗‖ < ‖x0 −x∗‖ < r∗, (21.2.29)

which shows (21.2.21) for n = 0. Next, we need an estimate on ‖Bθ,0‖. We have by the

definition of operator Bθ,0 and functions g1,3, g3, g6 that

‖Bθ,0‖ ≤ 1+2g1,3(‖x0 −x∗‖)‖x0 −x∗‖+4g2
3(‖x0−x∗‖)‖x0−x∗‖2 = g6(‖x0 −x∗‖),

(21.2.30)

which shows (21.2.22) for n = 0. Using the fourth substep in method (21.1.2) for n = 0,
(21.2.3), (21.2.15), (21.2.21), (21.2.22), (21.2.29) the definition of functions g5, g6, g7 and

radius r∗, we obtain that

‖x1 −x∗‖ ≤ ‖z0 −x∗‖+ |α|‖Bθ,0‖‖F ′(x0)
−1F ′(x∗)‖

‖
Z 1

0
F ′(x∗)−1F ′(x∗ + t(z0 −x∗)dt‖‖z0−x∗‖

≤ (1+
M|α|g6(‖x0 −x∗‖)
(1−L0‖x0 −x∗‖) )‖z0−x∗‖

= (1+
M|α|g6(‖x0 −x∗‖)
(1−L0‖x0 −x∗‖) )g5(‖x0 −x∗‖)‖x0−x∗‖, (21.2.31)

which shows (21.2.23) for n = 0. By simply replacing y0,u0, z0,x1 by yk,uk, zk,xk+1 in the

preceding estimates we arrive at estimates (21.2.17)-(21.2.23). Finally, from the estimate

‖xk+1−x∗‖< ‖xk −x∗‖, we deduce that limk→∞ xk = x∗.
�

Remark 21.2.2. 1. In view of (21.2.13) and the estimate

‖F ′(x∗)−1F ′(x)‖ = ‖F ′(x∗)−1(F ′(x)−F ′(x∗))+ I‖
≤ 1+‖F ′(x∗)−1(F ′(x)−F ′(x∗))‖ ≤ 1+L0‖x−x∗‖

condition (21.2.15) can be dropped and M can be replaced by

M(r) = 1+L0r.

Moreover, condition (21.2.14) can be replaced by the popular but stronger conditions

‖F ′(x∗)−1(F ′(x)−F ′(y))‖ ≤ L‖x−y‖ for each x,y ∈ D (21.2.32)

or

‖F ′(x∗)−1(F ′(x∗ + t(x−x∗))−F ′(x))‖ ≤ L(1− t)‖x−x∗‖ for each

x,y ∈ D and t ∈ [0,1].
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2. The results obtained here can be used for operators F satisfying autonomous differ-

ential equations [3] of the form

F ′(x) = P(F(x))

where P is a continuous operator. Then, since F ′(x∗) = P(F(x∗)) = P(0), we can

apply the results without actually knowing x∗. For example, let F(x) = ex −1. Then,

we can choose: P(x) = x+1.

3. The local results obtained here can be used for projection methods such as the

Arnoldi’s method, the generalized minimum residual method (GMRES), the gener-

alized conjugate method(GCR) for combined Newton/finite projection methods and

in connection to the mesh independence principle can be used to develop the cheapest

and most efficient mesh refinement strategies [3, 4].

4. The radius rA given by

r ≤ rA =
1

L0 + L
2

. (21.2.33)

was shown by us to be the convergence radius of Newton’s method [3, 4]

xn+1 = xn −F ′(xn)
−1F(xn) for each n = 0,1,2, · · · (21.2.34)

under the conditions (21.2.13) and (21.2.32). It follows from (21.2.1) and (21.2.33)

that the convergence radius r∗ of the method (21.1.2) cannot be larger than the con-

vergence radius rA of the second order Newton’s method (21.2.33). As already noted

in [3, 4] rA is at least as large as the convergence ball given by Rheinboldt [3, 4]

rR =
2

3L
. (21.2.35)

In particular, for L0 < L we have that

rR < rA

and
rR

rA

→ 1

3
as

L0

L
→ 0.

That is our convergence ball rA is at most three times larger than Rheinboldt’s. The

same value for rR was given by Traub [3, 4].

5. It is worth noticing that method (21.1.2) is not changing when we use the conditions

of Theorem 21.2.1 instead of the stronger (C ) conditions used in [30]. Moreover, we

can compute the computational order of convergence (COC) defined by

ξ = ln

(‖xn+1 −x∗‖
‖xn −x∗‖

)
/ ln

( ‖xn −x∗‖
‖xn−1−x∗‖

)

or the approximate computational order of convergence

ξ1 = ln

(‖xn+1−xn‖
‖xn −xn−1‖

)
/ ln

( ‖xn−xn−1‖
‖xn−1 −xn−2‖

)
.

This way we obtain in practice the order of convergence in a way that avoids the

bounds given in [30] involving estimates up to the second Fréchet derivative of oper-

ator F.
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21.3. Numerical Examples

We present numerical examples in this section.

Example 21.3.1. Let X = Y = R
2,D = Ū(0,1),x∗ = 0 and define function F on D by

F(x) = (sinx,
1

3
(ex +2x−1)). (21.3.1)

Then, using (21.2.9)-(21.2.15), we get L0 = L = 1, M = 1
3 (e + 2), θ = 3

4 , γ = 3
5 , α = 3

100.
Then, by (21.2.1) we obtain

r∗ = 0.3161 < rR = rA = 0.6667

Example 21.3.2. Let X = Y = R
3, D = U(0,1). Define F on D for v = x,y, z) by

F(v) = (ex −1,
e−1

2
y2 +y, z). (21.3.2)

Then, the Fréchet-derivative is given by

F ′(v) =




ex 0 0

0 (e−1)y+1 0

0 0 1


 .

Notice that x∗ = (0,0,0), F ′(x∗) = F ′(x∗)−1 = diag{1,1,1}, L0 = e−1 < L = e, M = e, θ =
3
4 , γ = 3

10 , α = 3
100. Then, by (21.2.1) we obtain

r∗ = 0.2136 < rR = 0.2453 < rA = 0.3249.

Example 21.3.3. Returning back to the motivational example at the introduction of this

chapter, we see that conditions (21.2.12)–(21.2.15) are satisfied for x∗ = 1, f ′(x∗) =
3, f (1) = 0, L0 = L = 146.6629073 and M = 101.5578008. Hence, the results of Theo-

rem 2.1 can apply but not the ones in [30]. In particular, for θ = 0.9902, α = 0.008 and

γ = 0.005 hypotheses (21.2.9)-(21.2.15) are satisfied. Moreover, we obtain

r∗ = 0.0032 < rR = 0.0045≤ rA = 0.0045.

21.4. Conclusion

We present a local convergence analysis of Modified Halley-Like Methods with less com-

putation of inversion in order to approximate a solution of an equation in a Banach space

setting. Earlier convergence analysis is based on Lipschitz and Holder-type hypotheses up

to the second Fréchet-derivative [1]–[20]. In this chapter the local convergence analysis is

based only on Lipschitz hypotheses of the first Fréchet-derivative. Hence, the applicability

of these methods is expanded under less computational cost of the constants involved in the

convergence analysis.
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Chapter 22

Local Convergence for an Improved

Jarratt-Type Method in Banach

Space

22.1. Introduction

In this chapter we are concerned with the problem of approximating a solution x∗ of the

equation

F(x) = 0, (22.1.1)

where F is a Fréchet-differentiable operator defined on a convex subset D of a Banach space

X with values in a Banach space Y .

Many problems in computational sciences and other disciplines can be brought in a

form like (22.1.1) using mathematical modelling [11, 12, 29, 31]. The solutions of these

equations can rarely be found in closed form. That is why most solution methods for

these equations are iterative. The study about convergence matter of iterative procedures

is usually based on two types: semilocal and local convergence analysis. The semilocal

convergence matter is, based on the information around an initial point, to give condi-

tions ensuring the convergence of the iterative procedure; while the local one is, based on

the information around a solution, to find estimates of the radii of convergence balls. In

particular, the practice of Numerical Functional Analysis for finding solution x∗ of equa-

tion (22.1.1) is essentially connected to variants of Newton’s method. This method con-

verges quadratically to x∗ if the initial guess is close enough to the solution. Iterative

methods of convergence order higher than two such as Chebyshev-Halley-type methods

[5, 6, 11, 14, 23, 30, 12, 19, 20, 21, 22, 24, 25, 26, 27, 28, 31, 33] require the evaluation of

the second Fréchet-derivative, which is very expensive in general. However, there are inte-

gral equations, where the second Fréchet-derivative is diagonal by blocks and inexpensive

or for quadratic equations the second Fréchet-derivative is constant. Moreover, in some ap-

plications involving stiff systems, high order methods are usefull. That is why in a unified

way we study the local convergence of the improved Jarratt-type method (IJTM) defined
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for each n = 0,1,2, . . . by

un = xn −F ′(xn)
−1F(xn),

yn = xn +
2

3
(un−xn),

Jn =
(
6F ′(yn)−2F ′(xn)

)−1 (
3F ′(yn)+F ′(xn)

)
, (22.1.2)

zn = xn −JnF ′(xn)
−1F(xn),

xn+1 = zn − (2Jn − I)F ′(xn)
−1F(zn),

where x0 is an initial point and I is the identity operator. If we set Hn = F ′(xn)
−1(F ′(yn)−

F ′(xn)), then using some algebraic manipulation we obtain that

Jn =
1

2

(
I +

(
I +

3

2
Hn

)−1
)

= I − 3

4

(
I +

3

2
Hn

)−1

Hn. (22.1.3)

This method has been shown to be of convergence order between 5 and 6 [29, 33]. The

usual conditions for the semilocal convergence of these methods are (C ):

(C1) There exists Γ0 = F ′(x0)
−1 and ‖Γ0‖ ≤ β, β > 0;

(C2) ‖Γ0F(x0)‖ ≤ η, η ≥ 0;

(C3) ‖F ′′(x)‖ ≤ β1 for each x ∈ D, β1 ≥ 0;

(C4) ‖F ′′′(x)‖ ≤ β2 for each x ∈ D, β2 ≥ 0

or

(C ′
4) ‖F ′′′(x0)‖ ≤ β2 for each x ∈ D, β2 ≥ 0 and some x0 ∈ D;

(C5) ‖F ′′′(x)−F ′′′(y)‖ ≤ β3‖x−y‖ for each x,y ∈ D

or ‖F ′′′(x)−F ′′′(y)‖≤ ϕ(‖x−y‖)) for each x,y ∈ D, where ϕ : [0,+∞)→ [0,+∞) is

a non-decreasing function.

The local convergence conditions are similar but x0 is x∗ in (C1) and (C2). There is

a plethora of local and semilocal convergence results under the (C ) conditions [1]–[33].

These conditions restrict the applicability of these methods. That is why, in our chapter we

assume the conditions (A):

(A1) F : D → Y is Fréchet-differentiable and there exists x∗ ∈ D such that F(x∗) = 0 and

F ′(x∗)−1 ∈ L(Y,X);

(A2) ‖F ′(x∗)−1(F ′(x)−F ′(x∗))‖ ≤ L0‖x−x∗‖ for each x ∈ D;

(A3) ‖F ′(x∗)−1(F ′(x)−F ′(y))‖ ≤ L‖x−y‖ for each x,y ∈ D;

and

(A4) ‖F ′(x∗)−1F ′(x)‖ ≤ K for each x ∈ D, k > 0.
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Notice that the (A) conditions are weaker than the (C ) conditions. Hence, the applicability

of (IJTM) is expanded under the (A) conditions.

As a motivational example, let us define function f on D = U
(
1, 3

2

)
by

f (x) =





x3 lnx2 +x5 −x4, x 6= 0

0, x = 0.

Choose x∗ = 1. We have that

f ′(x) = 3x2 lnx2 +5x4 −4x3 +2x2,

f ′′(x) = 6x lnx2 +20x3 +12x2 +10x

and

f ′′′(x) = 6lnx2 +60x2 −24x+22.

Notice that f ′′′(x) is bounded on D. That is condition (C4) is not satisfied. Hence, the results

depending on (C4) cannot apply in this case. However, we have f ′(x∗) = 3 and f (1) =

0. That is, conditions (A1) is satisfied. Moreover, conditions (A2), (A3) are satisfied for

L0 = L = 146.6629073 . . . and K = 101.5578008 . . .. Then, condition (A4) is also satisfied.

Hence, the results of our Theorem 22.2.1 that follows can apply to solve equation f (x) = 0

using IJTM. Hence, the applicability of IJTM is expanded under the conditions (A).

The chapter is organized as follows: In Section 22.2. we present the local convergence

of these methods. The numerical examples are given in the concluding Section 22.3..

In the rest of this chapter, U(w,q) and U(w,q) stand, respectively, for the open and

closed ball in X with center w ∈ X and of radius q > 0.

22.2. Local Convergence

In this section we present the local convergence of IJTM under the (A) conditions. It is

convenient for the local convergence of IJTM to introduce some funcitons and parameters.

Let L0 > 0,L > 0 and K > 0 be given constants. Define parameters rA and r0 by

rA =
2

2L0 +L
(22.2.1)

and

r0 =

√
2√

2L0 +L
· (22.2.2)

Notice that

r0 < rA <
1

L0

· (22.2.3)

Define functions f1 and f2 on the interval
[
0, 1

L0

)
by

f1(t) =
Lt

2(1−L0t)
(22.2.4)
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and

f2(t) =
1

3

(
1+

Lt

1−L0t

)
. (22.2.5)

Then, we have by the choice of rA that

f1(t)≤ 1 for each t ∈ [0, rA] (22.2.6)

and

f2(t)≤ 1 for each t ∈ [0, rA]. (22.2.7)

Define function f3 on the interval
[
0, 1

L0

)
by

f3(t) =
(Lt)2

2(1−L0t)2
· (22.2.8)

Then, we have that

f3(t)≤ 1 for each t ∈ [0, r0] (22.2.9)

and

f3(t) < 1 for each t ∈ [0, r0). (22.2.10)

Moreover, define functions f4 and f5 on the interval [0, r0) by

f4(t) =
Lt2

2(1−L0t)

[
1+

L2Kt

2(1−L0t)2−L2t2

]
(22.2.11)

and

f5(t) =

[
1+

2K

2(1−L0t)2−L2t2

]
f4(t). (22.2.12)

Furthermore, define functions f 4 and f 5 on the interval [0, r0) by

f 4(t) = f4(t)−1 (22.2.13)

and

f 5(t) = f5(t)−1. (22.2.14)

We have that f 4(0) = f 5(0) = −1 < 0 and f 4(t)→ +∞, f 5(t)→ +∞ as t → r0. It follows

by intermediate value theorem that functions f 4 and f 5 has zeros in (0, r0). Denote by r4

and r5 the minimal zeros of functions f 4 and f 5 on the interval (0, r0), respectively. Finally,

define

r = min{r4, r5}. (22.2.15)

Then, we have by the choice of r that

f1(t) < 1, (22.2.16)

f2(t) < 1, (22.2.17)

f3(t) < 1, (22.2.18)

f4(t) < 1, (22.2.19)

and

f5(t) < 1 for each t ∈ [0, r). (22.2.20)

Next, we present the main local convergence for IJTM under the (A) conditions.
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Theorem 22.2.1. Suppose that the (A) conditions and U(x∗, r) ⊆ D, where r is given by

(22.2.15). Then, sequence {xn} generated by IJTM (22.1.2) for any x0 ∈ U(x∗, r) is well

defined, remains in U(x∗, r) for each n = 0,1,2, . . . and converges to x∗. Moreover, the

following estimates hold for each n = 0,1,2, . . .

‖xn+1 −x∗‖ ≤ f5(‖xn−x∗‖)‖xn−x∗‖ < ‖xn −x∗‖< r, (22.2.21)

where function f5 is defined by (22.2.12).

Proof. We shall use induction to show that estimates (22.2.20) hold for each n = 0,1,2, . . .
Using (A2) and the hypothesis x0 ∈ U(x∗, r), we have that

‖F ′(x∗)−1(F ′(x0)−F ′(x∗))‖ ≤ L0‖x0 −x∗‖ < L0r < 1, (22.2.22)

by the choice of r. It follows from (22.2.22) and the Banach lemma on invertible operators

that [11, 12, 28] F ′(x0)
−1 ∈ L(Y,X) and

‖F ′(x0)
−1F ′(x∗)‖ ≤ 1

1−L0‖x0 −x∗‖ <
1

1−L0r
· (22.2.23)

Using the first substep of IJTM for n = 0, F(x∗) = 0, (A1), (A2), (22.2.22) and the choice

of r we get that

u0 −x∗ = x0 −x∗−F ′(x0)
−1F(x0)

= −(F ′(x0)
−1F ′(x∗))

[
F ′(x∗)−1

×
Z 1

0
(F ′(x∗ +θ(x0−x∗))−F ′(x0))dθ(x0−x∗)

]
, (22.2.24)

so

‖u0−x∗‖ ≤ ‖F ′(x0)
−1F ′(x∗)‖

×
∥∥∥∥∥F ′(x∗)−1

Z 1

0
(F ′(x∗ +θ(x0−x∗))−F ′(x0))dθ

∥∥∥∥∥‖x0 −x∗‖

≤ L0‖x0 −x∗‖2

2(1−L0‖x0 −x∗‖) ≤
L‖x0 −x∗‖2

2(1−L0‖x0 −x∗‖)
≤ f1(r)‖x0−x∗‖ < ‖x0 −x∗‖< r, (22.2.25)

which shows u0 ∈ U(x∗, r). Using the second substep of IJTM, we get by (22.2.25) and

(22.2.17) that

y0 −x∗ = x0 −x∗ +
2

3
(u0−x0)

= x0 −x∗ +
2

3
(u0−x∗)+

2

3
(x∗−x0)

=
1

3
(x0 −x∗)+

2

3
(u0−x∗)
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so,

‖y0−x∗‖ ≤ 1

3
‖x0 −x∗‖+

2

3
‖u0−x∗‖ ≤ f2(r)‖x0−x∗‖ < r,

which shows that y0 ∈U(x∗, r).

Next, we shall find upper bounds on ‖H0‖ and ‖J0‖. Using (A1), (22.2.24), (22.2.18)

that

3

2
‖H0‖ ≤ 3

2
‖F ′(x0)

−1F ′(x∗)‖‖F ′(x∗)−1(F ′(y0)−F ′(x0))‖

≤ 3

2

L‖y0 −x0‖
1−L0‖x0 −x∗‖ ≤ 3

2
· 2

3

L‖u0 −x0‖
1−L0‖x0 −x∗‖

≤ L2‖x0 −x∗‖2

2(1−L0‖x0 −x∗‖2)
<

(
Lr√

2(1−L0r)

)2

= ( f3(r))2 < 1. (22.2.26)

It follows from (22.2.25) and the Banach lemma on invertible operators that(
I + 3

2
H0

)−1 ∈ L(Y,X) and

∥∥∥∥∥

(
I +

3

2
H0

)−1
∥∥∥∥∥ ≤ 1

1− L2‖x0−x∗‖2

2(1−L0‖x0−x∗‖)2

<
1

1− L2r2

2(1−L0r)2

· (22.2.27)

It then follows from the definition of J0, (22.2.26) and (22.2.27) that

‖J0‖ ≤ 1+
3

4

L2‖x0−x∗‖2

3(1−L0‖x0−x∗‖)

1− L2‖x0−x∗‖2

2(1−L0‖x0−x∗‖)2

= 1+
1

2
· (1−L0‖x0 −x∗‖)L2‖x0 −x∗‖2

[2(1−L0‖x0 −x∗‖)2−L2‖x0 −x∗‖2]
· (22.2.28)

Then, from the fourth substep of IJTM for n = 0, (22.2.25), (22.2.26), (22.2.27), (22.2.19)

and (A4)

z0 = x0 −F ′(x0)
−1F(x0)+

3

4

(
I +

3

2
H0

)−1

H0F ′(x0)
−1F(x0)
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so,

‖z0−x∗‖ ≤ ‖x0 −x∗−F ′(x0)
−1F(x0)‖

+
3

4

∥∥∥∥∥

(
I +

3

2
H0

)−1
∥∥∥∥∥‖H0‖‖F ′(x0)

−1F ′(x∗)‖

×
∥∥∥∥F ′(x∗)−1

Z 1

0
F ′(x∗ +θ(x0 −x∗))(x0−x∗)dθ

∥∥∥∥

≤ L‖x0 −x∗‖2

2(1−L0‖x0 −x∗‖) +
3

4

1

1− L2‖x0−x∗‖
2(1−L0‖x0−x∗‖)

=
2

3

L2‖x0−x∗‖
2(1−L0‖x0 −x∗‖)2

K‖x0 −x∗‖
1−L0‖x0 −x∗‖)

= f4(‖x0 −x∗‖)‖x0−x∗‖ < ‖x0 −x∗‖ < r, (22.2.29)

which shows z0 ∈U(x∗, r).

Notice that we used

F(x0) = F(x0)−F(x∗) =
Z 1

0
F ′(x∗ +θ(x0 −x∗))(x0−x∗)dθ

so

‖F ′(x∗)−1F(x0)‖ ≤ K‖x0 −x∗‖ by (A4). (22.2.30)

Next, using the last substep in IJTM for n = 0, (22.2.23), (22.2.27), (22.2.19) and

(22.2.30) (for x0 replaced by z0) we get in turn that

‖x1−x∗‖ ≤ ‖z0 −x∗‖+
1

1− L2‖x0−x∗‖2

2(1−L0‖x0−x∗‖)2

K‖z0−x∗‖
1−L0‖x0 −x∗‖

×
[

1+
2K(1−L0‖x0 −x∗‖)

2(1−L0‖x0 −x∗‖)2−L2‖x0 −x∗‖2

]
‖z0−x∗‖

≤ f5(‖x0 −x∗‖)‖x0−x∗‖ ≤ f5(r)‖x0−x∗‖
< ‖x0 −x∗‖, (22.2.31)

which shows (22.2.21) for n = 0.

To complete the induction, simple replace in all preceding estimates x0,u0,y0, z0,x1 by

xk,uk,yk, zk,xk+1, respectively to arrive at (22.2.21), which complete the induction.

Finally it follows from (22.2.21) that lim
k→+∞

xk = x∗ �

Remark 22.2.2. (a) Condition (A2) can be dropped, since this condition follows from

(A3). Notice, however that

L0 ≤ L (22.2.32)

holds in general and L
L0

can be arbitrarily large [2, 3, 4, 5, 6].
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(b) In view of condition (A2) and the estimate

‖F ′(x∗)−1F ′(x)‖ = ‖F ′(x∗)−1[F ′(x)−F ′(x∗)]+ I‖
≤ 1+‖F ′(x∗)−1(F ′(x)−F ′(x∗))‖
≤ 1+L0‖x−x∗‖,

condition (A4) can be dropped and K can be replaced by

K(r) = 1+L0r. (22.2.33)

(c) It is worth noticing that r is such that

r < rA for α 6= 0. (22.2.34)

The convergence ball of radius rA was given by us in [2, 3, 5] for Newton’s method

under conditions (A1)-(A3). Estimate (22.2.22) shows that the convergence ball of

higher than two IJTM methods is smaller than the convergence ball of the quadrat-

ically convergent Newton’s method. The convergence ball given by Rheinboldt [31]

for Newton’s method is

rR =
2

3L
< rA (22.2.35)

if L0 < L and rR

rA
→ 1

3
as L0

L
→ 0. Hence, we do not expect r to be larger than rA no

matter how we choose L0,L and K. Finally note that if α = 0, then IJTM reduces to

Newton’s method and r = rA.

(d) The local results can be used for projection methods such as Arnoldi’s method, the

generalized minimum residual method (GMREM), the generalized conjugate method

(GCM) for combined Newton/finite projection methods and in connection to the mesh

independence principle in order to develop the cheapest and most efficient mesh re-

finement strategy [11, 12, 31].

(e) The results can also be used to solve equations where the operator F ′ satisfies the

autonomous differential equation [11, 12, 29, 31]:

F ′(x) = T (F(x)), (22.2.36)

where T is a known continuous operator. Since F ′(x∗) = T (F(x∗)) = T (0), we can

apply the results without actually knowing the solution x∗. Let as an example F(x) =

ex −1. Then, we can choose T (x) = x+1 and x∗ = 0.

(f) It is worth noticing that IJTM is not changing if we use the (A) instead of the (C )

conditions. Moreover for the error bounds in practice we can use the computational

order of convergence (COC) [1, 2, 3, 4, 11, 12, 15] using

ξ = sup
ln
(
‖xn+2−xn+1‖
‖xn+1−xn‖

)

ln
(
‖xn+1−xn‖
‖xn−xn−1‖

) for each n = 1,2, . . .
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or the approximate computational order of convergence (ACOC)

ξ∗ = sup
ln
(
‖xn+2−x∗‖
‖xn+1−x∗‖

)

ln
(
‖xn+1−x∗‖
‖xn−x∗‖

) for each n = 0,1,2, . . .

instead of the error bounds obtained in Theorem 22.2.1.

22.3. Numerical Examples

We present numerical examples where we compute the radii of the convergence balls.

Example 22.3.1. Let X = Y = R
3, D = U(0,1). Define F on D for v = (x,y, z) by

F(v) =

(
ex −1,

e−1

2
y2 +y, z

)
. (22.3.1)

Then, the Fréchet-derivative is given by

F ′(v) =




ex 0 0

0 (e−1)y+1 0

0 0 1


 .

Notice that x∗ = (0,0,0), F ′(x∗) = F ′(x∗)−1 = diag{1,1,1}, L0 = e−1 < L = K = e, r0 =

0.274695 . . . < rA = 0.324967 . . .< 1/L0 = 0.581977 . . ., r = 0.144926 . . ..

Example 22.3.2. Let X = Y = C([0,1]), the space of continuous functions defined on [0,1]
be and equipped with the max norm. Let D = U(0,1). Define function F on D by

F(ϕ)(x) = ϕ(x)−5

Z 1

0
xθϕ(θ)3dθ. (22.3.2)

We have that

F ′(ϕ(ξ))(x) = ξ(x)−15

Z 1

0
xθϕ(θ)2ξ(θ)dθ, for each ξ ∈ D.

Then, we get that x∗ = 0, L0 = 7.5, L = 15 and K = K(t) = 1 + 7.5t, r0 = 0.055228 . . . <
rA = 0.066666 . . .< 1/L0 = 0.133333 . . ., r = 0.0370972 . . ..

Example 22.3.3. Returning to the motivational example at the Introduction of this chapter,

let the function f on D = U =
(
1, 3

2

)
defined by

f (x) =





x3 lnx2 +x5 −x4, x 6= 0

0, x = 0.

Then, L0 = L = 146.662907 . . ., K = 101.557800 . . ., r0 = 0.003984 . . . < rA =
0.004545 . . . < 1/L0 = 0.006818 . . . and r = 0.000442389 . . ..
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[14] Argyros, I. K., Magreñán, Á.A., On the convergence of an optimal fourth-order family

of methods and its dynamics. App. Math. Comp., 252 (2015), 336-346.

[15] Chicharro,F., Cordero, A., Gutiérrez, J. M., Torregrosa, J. R., Dynamics of derivative-

free methods for nonlinear equations, App. Math. Comp., 219 (2013), 7023-7035.
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Chapter 23

Enlarging the Convergence Domain

of Secant-Like Methods for

Equations

23.1. Introduction

Let X , Y be Banach spaces and D be a non-empty, convex and open subset in X . Let

U(x, r) and U(x, r) stand, respectively, for the open and closed ball in X with center x and

radius r > 0. Denote by L(X ,Y ) the space of bounded linear operators from X into Y . In

the present chapter we are concerned with the problem of approximating a locally unique

solution x? of equation

F(x) = 0, (23.1.1)

where F is a Fréchet continuously differentiable operator defined on D with values in Y .

A lot of problems from computational sciences and other disciplines can be brought in

the form of equation (23.1.1) using Mathematical Modelling [8, 10, 14]. The solution of

these equations can rarely be found in closed form. That is why most solution methods for

these equations are iterative. In particular, the practice of numerical analysis for finding

such solutions is essentially connected to variants of Newton’s method [8, 10, 14, 22, 25,

27, 32].

A very important aspect in the study of iterative procedures is the convergence domain.

In general the convergence domain is small. This is why it is important to enlarge it without

additional hypotheses. Then, this is our goal in this chapter.

In the present chapter we study the secant-like method defined by

x−1, x0 are initial points

yn = λxn +(1−λ)xn−1, λ ∈ [0,1]

xn+1 = xn −B−1
n F(xn), Bn = [yn,xn;F] for each n = 0,1,2, · · · .

(23.1.2)

The family of secant-like methods reduces to the secant method if λ = 0 and to Newton’s

method if λ = 1. It was shown in [27] (see also [7, 8, 21] and the references therein) that

the R–order of convergence is at least (1 +
√

5)/2 if λ ∈ [0,1), the same as that of the se-

cant method. In the real case the closer xn and yn are, the higher the speed of convergence.
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Moreover in [19], it was shown that as λ approaches 1 the speed of convergence is close

to that of Newton’s method. Moreover, there exist new graphical tools [24]. Furthermore,

the advantages of using secant-like method instead of Newton’s method is that the former

method avoids the computation of F ′(xn)
−1 at each step. The study about convergence mat-

ter of iterative procedures is usually centered on two types: semilocal and local convergence

analysis. The semilocal convergence matter is, based on the information around an initial

point, to give criteria ensuring the convergence of iterative procedure; while the local one

is, based on the information around a solution, to find estimates of the radii of convergence

balls. There is a plethora of studies on the weakness and/or extension of the hypothesis

made on the underlying operators; see for example [1]–[34].

The hypotheses used for the semilocal convergence of secant-like method are (see [8,

18, 19, 21]):

(C1) There exists a divided difference of order one denoted by [x,y;F] ∈ L(X ,Y ) satisfy-

ing

[x,y;F](x−y) = F(x)−F(y) for all x,y ∈ D;

(C2) There exist x−1, x0 in D and c > 0 such that

‖ x0 −x−1 ‖≤ c;

(C3) There exist x−1,x0 ∈ D and M > 0 such that A−1
0 ∈ L(Y ,X ) and

‖ A−1
0 ([x,y;F]− [u,v;F]) ‖≤ M (‖ x−u ‖ + ‖ y−v ‖) for all x,y,u,v ∈ D;

(C ?
3 ) There exist x−1,x0 ∈ D and L > 0 such that A−1

0 ∈ L(Y ,X ) and

‖ A−1
0 ([x,y;F]− [v,y;F]) ‖≤ L ‖ x−v ‖ for all x,y,v ∈ D;

(C ??
3 ) There exist x−1,x0 ∈ D and K > 0 such that F(x0)

−1 ∈ L(Y ,X ) and

‖ F ′(x0)
−1 ([x,y;F]− [v,y;F]) ‖≤ K ‖ x−v ‖ for all x,y,v ∈ D;

(C4) There exists η > 0 such that

‖ A−1
0 F(x0) ‖≤ η;

(C ?
4 ) There exists η > 0 for each λ ∈ [0,1] such that

‖ B−1
0 F(x0) ‖≤ η.

We shall refer to (C1)–(C4) as the (C ) conditions. From analyzing the semilocal conver-

gence of the simplified secant method, it was shown [18] that the convergence criteria are

milder than those of secant-like method given in [20]. Consequently, the decreasing and

accessibility regions of (23.1.2) can be improved. Moreover, the semilocal convergence of

(23.1.2) is guaranteed.

In the present chapter we show: an even larger convergence domain can be obtained

under the same or weaker sufficient convergence criteria for method (23.1.2). In view of

(C3) we have that
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(C5) There exists M0 > 0 such that

‖ A−1
0 ([x,y;F]− [x−1,x0;F ]) ‖≤ M0 (‖ x−x−1 ‖ + ‖ y−x0 ‖) for all x,y ∈ D.

We shall also use the conditions

(C6) There exist x0 ∈ D and M1 > 0 such that F ′(x0)
−1 ∈ L(Y ,X ) and

‖ F ′(x0)
−1 ([x,y;F]−F ′(x0)) ‖≤ M1 (‖ x−x0 ‖ + ‖ y−x0 ‖) for all x,y ∈ D;

(C7) There exist x0 ∈ D and M2 > 0 such that F ′(x0)
−1 ∈ L(Y ,X ) and

‖ F ′(x0)
−1 (F ′(x)−F ′(x0)) ‖≤ M2 (‖ x−x0 ‖ + ‖ y−x0 ‖) for all x,y ∈ D.

Note that M0 ≤ M, M2 ≤ M1, L ≤ M hold in general and M/M0, M1/M2, M/L can be

arbitrarily large [6, 7, 8, 9, 10, 14]. We shall refer to (C1), (C2), (C ??
3 ), (C ?

4 ), (C6) as the

(C ?) conditions and (C1), (C2), (C ?
3 ), (C ?

4 ), (C5) as the (C ??) conditions. Note that (C5) is not

additional hypothesis to (C3), since in practice the computation of constant M requires that

of M0. Note that if (C6) holds, then we can set M2 = 2M1 in (C7).

The chapter is organized as follows. In Section 23.2. we use the (C ?) and (C ??) con-

ditions instead of the (C ) conditions to provide new semilocal convergence analyses for

method (23.1.2) under weaker sufficient criteria than those given in [18, 19, 21, 26, 27].

This way we obtain a larger convergence domain and a tighter convergence analysis. Two

numerical examples, where we illustrate the improvement of the domain of starting points

achieved with the new semilocal convergence results, are given in the Section 23.3..

23.2. Semilocal Convergence of Secant-Like Method

We present the semilocal convergence of secant-like method. First, we need some results

on majorizing sequences for secant-like method.

Lemma 23.2.1. Let c ≥ 0, η > 0, M1 > 0, K > 0 and λ ∈ [0,1]. Set t−1 = 0, t0 = c and

t1 = c+η. Define scalar sequences {qn}, {tn}, {αn} for each n = 0,1, · · · by

qn = (1−λ) (tn− t0)+(1+λ) (tn+1− t0),

tn+2 = tn+1 +
K (tn+1− tn +(1−λ) (tn− tn−1))

1−M1 qn

(tn+1− tn), (23.2.1)

αn =
K (tn+1− tn +(1−λ) (tn− tn−1))

1−M1 qn

, (23.2.2)

function { fn} for each n = 1,2, · · · by

fn(t) = K ηtn +K (1−λ)η tn−1 +M1 η((1−λ) (1+ t + · · ·+ tn)+
(1+λ) (1+ t + · · ·+ tn+1))−1

(23.2.3)

and polynomial p by

p(t) = M1 (1+λ) t3 +(M1 (1−λ)+K) t2 −K λ t−K (1−λ). (23.2.4)
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Denote by α the smallest root of polynomial p in (0,1). Suppose that

0 < α0 ≤ α ≤ 1−2M1 η. (23.2.5)

Then, sequence {tn} is non-decreasing, bounded from above by t?? defined by

t?? =
η

1−α
+c (23.2.6)

and converges to its unique least upper bound t? which satisfies

c+η ≤ t? ≤ t??. (23.2.7)

Moreover, the following estimates are satisfied for each n = 0,1, · · ·

0 ≤ tn+1− tn ≤ αn η (23.2.8)

and

t?− tn ≤
αn η

1−α
. (23.2.9)

Proof. We shall first prove that polynomial p has roots in (0,1). If λ 6= 1, p(0) = −(1−
λ)K < 0 and p(1) = 2M1 > 0. If λ = 1, p(t)= t p(t), p(0) =−K < 0 and p(1) = 2M1 > 0.

In either case it follows from the intermediate value theorem that there exist roots in (0,1).

Denote by α the minimal root of p in (0,1). Note that, in particular for Newton’s method

(i.e. for λ = 1) and for Secant method (i.e. for λ = 0), we have, respectively by (23.2.4)

that

α =
2K

K +
√

K2 +4M1 K
(23.2.10)

and

α =
2K

K +
√

K2 +8M1 K
. (23.2.11)

It follows from (23.2.1) and (23.2.2) that estimate (23.2.8) is satisfied if

0 ≤ αn ≤ α. (23.2.12)

Estimate (23.2.12) is true by (23.2.5) for n = 0. Then, we have by (23.2.1) that

t2 − t1 ≤ α (t1− t0) =⇒ t2 ≤ t1 +α (t1− t0)

=⇒ t2 ≤ η+ t0 +αη = c+(1+α)η = c+
1−α2

1−αη
< t??.

Suppose that

tk+1− tk ≤ αk η and tk+1 ≤ c+
1−αk+1

1−α
η. (23.2.13)

Estimate (23.2.12) shall be true for k +1 replacing n if

0 ≤ αk+1 ≤ α (23.2.14)
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or

fk(α) ≤ 0. (23.2.15)

We need a relationship between two consecutive recurrent functions fk for each k = 1,2, · · ·.
It follows from (23.2.3) and (23.2.4) that

fk+1(α) = fk(α)+ p(α)αk−1 η = fk(α), (23.2.16)

since p(α) = 0. Define function f∞ on (0,1) by

f∞(t) = lim
n→∞

fn(t). (23.2.17)

Then, we get from (23.2.3) and (23.2.17) that

f∞(α) = lim
n→∞

fn(α)

= K η lim
n→∞

αn +K (1−λ)η lim
n→∞

αn−1+

M1 η

(
(1−λ) lim

n→∞
(1+α+ · · ·+αn)+

(1+λ) lim
n→∞

(1+α+ · · ·+αn+1)

)
−1

= M1 η

(
1−λ

1−α
+

1+λ

1−α

)
−1 =

2M1 η

1−α
−1,

(23.2.18)

since α ∈ (0,1). In view of (23.2.15), (23.2.16) and (23.2.18) we can show instead of

(23.2.15) that

f∞(α) ≤ 0, (23.2.19)

which is true by (23.2.5). The induction for (23.2.8) is complete. It follows that sequence

{tn} is non-decreasing, bounded from above by t?? given by (23.2.6) and as such it con-

verges to t? which satisfies (23.2.7). Estimate (23.2.9) follows from (23.2.8) by using stan-

dard majorization techniques [8, 10, 22]. The proof of Lemma 23.2.1 is complete. �

Lemma 23.2.2. Let c ≥ 0, η > 0, M1 > 0, K > 0 and λ ∈ [0,1]. Set r−1 = 0, r0 = c and

r1 = c+η. Define scalar sequences {rn} for each n = 1, · · · by

r2 = r1 +β1 (r1− r0)

rn+2 = rn+1 +βn (rn+1− rn),
(23.2.20)

where

β1 =
M1 (r1 − r0 +(1−λ) (r0− r−1))

1−M1 q1

,

βn =
K (rn+1− rn +(1−λ) (rn− rn−1))

1−M1 qn

f or each n = 2,3, · · ·

and function {gn} on [0,1) for each n = 1,2, · · · by

gn(t) = K (t +(1−λ)) tn−1 (r2− r1)+

M1 t

(
(1−λ)

1− tn+1

1− t
+(1+λ)

1− tn+2

1− t

)
(r2 − r1)+(2M1 η−1) t.

(23.2.21)
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Suppose that

0 ≤ β1 ≤ α ≤ 1− 2M1 (r2− r1)

1−2M1 η
, (23.2.22)

where α is defined in Lemma 23.2.1. Then, sequence {rn} is non-decreasing, bounded from

above by r?? defined by

r?? = c+η +
r2 − r1

1−α
(23.2.23)

and converges to its unique least upper bound r? which satisfies

c+η ≤ r? ≤ r??. (23.2.24)

Moreover, the following estimates are satisfied for each n = 1, · · ·

0 ≤ rn+2− rn+1 ≤ αn (r2− r1). (23.2.25)

Proof. We shall use mathematical induction to show that

0 ≤ βn ≤ α. (23.2.26)

Estimate (23.2.26) is true for n = 0 by (23.2.22). Then, we have by (23.2.20) that

0 ≤ r3 − r2 ≤ α (r2− r1) =⇒ r3 ≤ r2 +α (r2 − r1)
=⇒ r3 ≤ r2 +(1+α) (r2− r1)− (r2 − r1)

=⇒ r3 ≤ r1 +
1−α2

1−α
(r2− r1) ≤ r??.

Suppose (23.2.26) holds for each n ≤ k, then, using (23.2.20), we obtain that

0 ≤ rk+2− rk+1 ≤ αk (r2 − r1) and rk+2 ≤ r1 +
1−αk+1

1−α
(r2 − r1). (23.2.27)

Estimate (23.2.26) is certainly satisfied, if

gk(α) ≤ 0, (23.2.28)

where gk is defined by (23.2.21). Using (23.2.21), we obtain the following relationship

between two consecutive recurrent functions gk for each k = 1,2, · · ·

gk+1(α) = gk(α)+ p(α)αk−1 (r2 − r1) = gk(α), (23.2.29)

since p(α) = 0. Define function g∞ on [0,1) by

g∞(t) = lim
k→∞

gk(t). (23.2.30)

Then, we get from (23.2.21) and (23.2.30) that

g∞(α) = α

(
2M1 (r2− r1)

1−α
+2M1 η−1

)
. (23.2.31)

In view of (23.2.28)–(23.2.31) to show (23.2.28), it suffices to have g∞(α) ≤ 0, which true

by the right hand hypothesis in (23.2.22). The induction for (23.2.26) (i.e. for (23.2.25)) is

complete. The rest of the proof is omitted (as identical to the proof of Lemma 23.2.1). The

proof of Lemma 23.2.2 is complete. �
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Remark 23.2.3. Let us see how sufficient convergence criterion on (23.2.5) for sequence

{tn} simplifies in the interesting case of Newton’s method. That is when c = 0 and λ = 1.

Then, (23.2.5) can be written for L0 = 2M1 and L = 2K as

h0 =
1

8
(L+4L0 +

√
L2 +8L0 L)η ≤ 1

2
. (23.2.32)

The convergence criterion in [18] reduces to the famous for it simplicity and clarity Kan-

torovich hypothesis

h = Lη ≤ 1

2
. (23.2.33)

Note however that L0 ≤ L holds in general and L/L0 can be arbitrarily large [6, 7, 8, 9, 10,

14]. We also have that

h ≤ 1

2
=⇒ h0 ≤

1

2
(23.2.34)

but not necessarily vice versa unless if L0 = L and

h0

h
−→ 1

4
as

L

L0

−→ ∞. (23.2.35)

Similarly, it can easily be seen that the sufficient convergence criterion (23.2.22) for se-

quence {rn} is given by

h1 =
1

8
(4L0 +

√
L0 L+8L2

0 +
√

L0 L)η ≤ 1

2
. (23.2.36)

We also have that

h0 ≤
1

2
=⇒ h1 ≤

1

2
(23.2.37)

and
h1

h
−→ 0,

h1

h0

−→ 0 as
L0

L
−→ 0. (23.2.38)

Note that sequence {rn} is tighter than {tn} and converges under weaker conditions. In-

deed, a simple inductive argument shows that for each n = 2,3, · · ·, if M1 < K, then

rn < tn, rn+1− rn < tn+1− tn and r? ≤ t?. (23.2.39)

We have the following usefull and obvious extensions of Lemma 23.2.1 and Lemma

23.2.2, respectively.

Lemma 23.2.4. Let N = 0,1,2, · · · be fixed. Suppose that

t1 ≤ t2 ≤ ·· · ≤ tN ≤ tN+1, (23.2.40)

1

M1

> (1−λ) (tN − t0)+(1+λ) (tN+1− t0) (23.2.41)

and

0 ≤ αN ≤ α ≤ 1−2M1 (tN+1− tN). (23.2.42)
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Then, sequence {tn} generated by (23.2.1) is nondecreasing, bounded from above by t??

and converges to t? which satisfies t? ∈ [tN+1, t
??]. Moreover, the following estimates are

satisfied for each n = 0,1, · · ·

0 ≤ tN+n+1− tN+n ≤ αn (tN+1− tN) (23.2.43)

and

t?− tN+n ≤
αn

1−α
(tN+1− tN). (23.2.44)

Lemma 23.2.5. Let N = 1,2, · · · be fixed. Suppose that

r1 ≤ r2 ≤ ·· · ≤ rN ≤ rN+1, (23.2.45)

1

M1

> (1−λ) (rN − r0)+(1+λ) (rN+1− r0) (23.2.46)

and

0 ≤ βN ≤ α ≤ 1− 2M1 (rN+1− rN)

1−2M1 (rN − rN−1)
. (23.2.47)

Then, sequence {rn} generated by (23.2.20) is nondecreasing, bounded from above by r??

and converges to r? which satisfies r? ∈ [rN+1, r??]. Moreover, the following estimates are

satisfied for each n = 0,1, · · ·

0 ≤ rN+n+1− rN+n ≤ αn (rN+1− rN) (23.2.48)

and

r?− rN+n ≤
αn

1−α
(rN+1− rN). (23.2.49)

Next, we present the following semilocal convergence result for secant-like method

under the (C ?) conditions.

Theorem 23.2.6. Suppose that the (C ?), Lemma 23.2.1 (or Lemma 23.2.4) conditions and

U(x0, t
?) ⊆ D (23.2.50)

hold. Then, sequence {xn} generated by the secant-like method is well defined, remains in

U(x0, t
?) for each n =−1,0,1, · · · and converges to a solution x? ∈U(x0, t

?−c) of equation

F(x) = 0. Moreover, the following estimates are satisfied for each n = 0,1, · · ·

‖ xn+1−xn ‖≤ tn+1− tn (23.2.51)

and

‖ xn −x? ‖≤ t?− tn. (23.2.52)

Furthemore, if there exists r ≥ t? such that

U(x0, r)⊆ D (23.2.53)

and

r + t? <
1

M1

or r + t? <
2

M2

, (23.2.54)

then, the solution x? is unique in U(x0, r).
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Proof. We use mathematical induction to prove that

‖ xk+1 −xk ‖≤ tk+1− tk (23.2.55)

and

U(xk+1, t
?− tk+1) ⊆U(xk, t

?− tk) (23.2.56)

for each k = −1,0,1, · · ·. Let z ∈U(x0, t
?− t0). Then, we obtain that

‖ z−x−1 ‖≤‖ z−x0 ‖ + ‖ x0 −x−1 ‖≤ t?− t0 +c = t? = t?− t−1,

which implies z ∈ U(x−1, t
?− t−1). Let also w ∈U(x0, t

?− t1). We get that

‖ w−x0 ‖≤‖ w−x1 ‖+ ‖ x1 −x0 ‖≤ t?− t1 + t1 − t0 = t? = t?− t0.

That is w ∈U(x0, t
?− t0). Note that

‖ x−1 −x0 ‖≤ c = t0 − t−1 and ‖ x1 −x0 ‖=‖ B−1
0 F(x0) ‖≤ η = t1 − t0 < t?,

which implies x1 ∈U(x0, t
?)⊆ D. Hence, estimates (23.2.51) and (23.2.52) hold for k =−1

and k = 0. Suppose (23.2.51) and (23.2.52) hold for all n ≤ k. Then, we obtain that

‖ xk+1 −x0 ‖≤
k+1

∑
i=1

‖ xi −xi−1 ‖≤
k+1

∑
i=1

(ti − ti−1) = tk+1− t0 ≤ t?

and

‖ yk −x0 ‖≤ λ ‖ xk −x0 ‖ +(1−λ) ‖ xk−1−x0 ‖≤ λ t? +(1−λ) t? = t?.

Hence, xk+1,yk ∈ U(x0, t
?). Let Ek := [xk+1,xk;F] for each k = 0,1, · · ·. Using (23.1.2),

Lemma 23.2.1 and the induction hypotheses, we get that

‖ F ′(x0)
−1 (Bk+1−F ′(x0)) ‖≤ M1 (‖ yk+1−x0 ‖+ ‖ xk+1−x0 ‖)

≤ M1 ((1−λ) ‖ xk −x0 ‖ +λ ‖ xk+1−x0 ‖ + ‖ xk+1 −x0 ‖)
≤ M1 ((1−λ) (tk − t0)+(1+λ) (tk+1− t0)) < 1,

(23.2.57)

since, yk+1−x0 = λ(xk+1−x0)+(1−λ) (xk −x0) and

‖ yk+1 −x0 ‖=‖ λ(xk+1−x0)+(1−λ) (xk −x0) ‖
≤ λ ‖ xk+1−x0 ‖ +(1−λ) ‖ xk −x0 ‖ .

It follows from (23.2.57) and the Banach lemma on invertible operators that B−1
k+1 exists and

‖ B−1
k+1 F ′(x0) ‖≤

1

1−Θk

≤ 1

1−M1 qk+1

, (23.2.58)

where Θk = M1 ((1−λ) ‖ xk −x0 ‖ +(1+λ) ‖ xk+1−x0 ‖). In view of (23.1.2), we obtain

the identity

F(xk+1) = F(xk+1)−F(xk)−Bk (xk+1−xk) = (Ek −Bk) (xk+1−xk). (23.2.59)
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Then, using the induction hypotheses, the (C ?) condition and (23.2.59), we get in turn that

‖ F ′(x0)
−1 F(xk+1) ‖ = ‖ F ′(x0)

−1 (Ek −Bk) (xk+1−xk) ‖
≤ K ‖ xk+1−yk ‖‖ xk+1−xk ‖
≤ K (‖ xk+1 −xk ‖ +(1−λ) ‖ xk −xk−1 ‖) ‖ xk+1−xk ‖
≤ K (tk+1− tk +(1−λ) (tk− tk−1)) (tk+1− tk),

(23.2.60)

since, xk+1−yk = xk+1−xk +(1−λ) (xk −xk−1) and

‖ xk+1−yk ‖≤‖ xk+1 −xk ‖ +(1−λ) ‖ xk −xk−1 ‖≤ tk+1− tk +(1−λ) (tk − tk−1).

It now follows from (23.1.2), (23.2.1), (23.2.58)–(23.2.60) that

‖ xk+2−xk+1 ‖ ≤ ‖ B−1
k+1 F ′(x0) ‖‖ F ′(x0)

−1 F(xk+1) ‖
≤ K (tk+1− tk +(1−λ) (tk+1−xk)) (tk+1− tk)

1−M1 qk+1

= tk+2− tk+1,

which completes the induction for (23.2.55). Furthemore, let v ∈U(xk+2, t
?− tk+2). Then,

we have that
‖ v−xk+1 ‖ ≤ ‖ v−xk+2 ‖ + ‖ xk+2 −xk+1 ‖

≤ t?− tk+2 + tk+2− tk+1 = t?− tk+1,

which implies v ∈U(xk+1, t
?−tk+1). The induction for (23.2.55) and (23.2.56) is complete.

Lemma 23.2.1 implies that {tk} is a complete sequence. It follows from (23.2.55) and

(23.2.56) that {xk} is a complete sequence in a Banach space X and as such it converges

to some x? ∈ U(x0, t
?) (since U(x0, t

?) is a closed set). By letting k −→ ∞ in (23.2.60), we

get that F(x?) = 0. Moreover, estimate (23.2.52) follows from (23.2.51) by using standard

majorization techniques [8, 10, 22]. To show the uniqueness part, let y? ∈ U(x0, r) be such

F(y?) = 0, where r satisfies (23.2.53) and (23.2.54). We have that

‖ F ′(x0)
−1 ([y?,x?;F]−F ′(x0)) ‖ ≤ M1 (‖ y? −x0 ‖ + ‖ x? −x0 ‖)

≤ M1 (t? + r) < 1.
(23.2.61)

It follows by (23.2.61) and the Banach lemma on invertible operators that linear operator

[y?,x?;F]−1 exists. Then, using the identity 0 = F(y?)−F(x?) = [y?,x?;F] (y? − x?), we

deduce that x? = y?. The proof of Theorem 23.2.6 is complete. �

In order for us to present the semilocal result for secant-like method under the (C ??)

conditions, we first need a result on a majorizing sequence. The proof in given in Lemma

23.2.1.

Remark 23.2.7. Clearly, (23.2.22) (or (23.2.47)), {rn} can replace (23.2.5) (or (23.2.42)),

{tn}, respectively in Theorem 23.2.6.

Lemma 23.2.8. Let c ≥ 0, η > 0, L > 0, M0 > 0 with M0 c < 1 and λ ∈ [0,1]. Set

s−1 = 0, s0 = c, s1 = c+η, K̃ =
L

1−M0 c
and M̃1 =

M0

1−M0 c
.
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Define scalar sequences {q̃n}, {sn}, {α̃n} for each n = 0,1, · · · by

q̃n = (1−λ) (sn− s0)+(1+λ) (sn+1− s0),

sn+2 = sn+1 +
K̃ (sn+1− sn +(1−λ) (sn− sn−1))

1−M̃1 q̃n

(sn+1− sn),

α̃n =
K̃ (sn+1− sn +(1−λ) (sn− sn−1))

1−M̃1 q̃n

,

function { f̃n} for each n = 1,2, · · · by

f̃n(t) = K̃ ηtn + K̃ (1−λ)η tn−1 +M̃1 η((1−λ) (1+ t + · · ·+ tn)+

(1+λ) (1+ t + · · ·+ tn+1))−1

and polynomial p̃ by

p̃(t) = M̃1 (1+λ) t3 +(M̃1 (1−λ)+ K̃) t2− K̃ λ t− K̃ (1−λ).

Denote by α̃ the smallest root of polynomial p̃ in (0,1). Suppose that

0 ≤ α̃0 ≤ α̃ ≤ 1−2M̃1 η. (23.2.62)

Then, sequence {sn} is non-decreasing, bounded from above by s?? defined by

s?? =
η

1− α̃
+c

and converges to its unique least upper bound s? which satisfies c+η ≤ s? ≤ s??. Moreover,

the following estimates are satisfied for each n = 0,1, · · ·

0 ≤ sn+1− sn ≤ α̃n η and s?− sn ≤
α̃n η

1− α̃
.

Next, we present the semilocal convergence result for secant-like method under the

(C ??) conditions.

Theorem 23.2.9. Suppose that the (C ??) conditions, (23.2.62) (or Lemma 23.2.2 conditions

with α̃n, α̃, M̃1 replacing, respectively, αn, α, M1) and U(x0, s?) ⊆ D hold. Then, sequence

{xn} generated by the secant-like method is well defined, remains in U(x0, s?) for each

n =−1,0,1, · · · and converges to a solution x? ∈U(x0, s?) of equation F(x) = 0. Moreover,

the following estimates are satisfied for each n = 0,1, · · ·

‖ xn+1 −xn ‖≤ sn+1− sn and ‖ xn −x? ‖≤ s?− sn.

Furthemore, if there exists r ≥ s? such that U(x0, r) ⊆ D and r + s? + c < 1/M0, then, the

solution x? is unique in U(x0, r).
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Proof. The proof is analogous to Theorem 23.2.6. Simply notice that in view of (C5), we

obtain instead of (23.2.57) that

‖ A−1
0 (Bk+1−A0) ‖≤ M0 (‖ yk+1−x−1 ‖ + ‖ xk+1−x0 ‖)

≤ M0 ((1−λ) ‖ xk −x0 ‖+λ ‖ xk+1−x0 ‖ + ‖ x0 −x−1 ‖ + ‖ xk+1 −x0 ‖)
≤ M0 ((1−λ) (sk − s0)+(1+λ) (sk+1− s0)+c) < 1,

leading to B−1
k+1 exists and

‖ B−1
k+1 A0 ‖≤

1

1−Ξk

,

where Ξk = M0 ((1−λ) (sk− s0)+(1+λ) (sk+1− s0)+c). Moreover, using (C ?
3 ) instead of

(C ??
3 ), we get that

‖ A−1
0 F(xk+1) ‖≤ L(sk+1− sk +(1−λ) (sk− sk−1)) (sk+1− sk).

Hence, we have that

‖ xk+2−xk+1 ‖≤‖ B−1
k+1 A0 ‖‖ A−1

0 F(xk+1) ‖
≤ L(sk+1− sk +(1−λ) (sk− sk−1)) (sk+1− sk)

1−M0 ((1+λ) (sk+1− s0)+(1−λ) (sk− s0)+c)

≤ K̃ (sk+1− sk +(1−λ) (sk − sk−1)) (sk+1− sk)

1−M̃1 ((1+λ) (sk+1− s0)+(1−λ) (sk− s0))
= sk+2− sk+1.

The uniqueness part is given in Theorem 23.2.6 with r, s? replacing R2 and R0, respectively.

The proof of Theorem 23.2.9 is complete. �

Remark 23.2.10. (a) Condition (23.2.50) can be replaced by

U(x0, t
??)⊆ D, (23.2.63)

where t?? is given in the closed form by (23.2.55).

(b) The majorizing sequence {un} essentially used in [18] is defined by

u−1 = 0, u0 = c, u1 = c+η

un+2 = un+1 +
M (un+1−un +(1−λ) (un−un−1))

1−M q?
n

(un+1−un),
(23.2.64)

where

q?
n = (1−λ) (un−u0)+(1+λ) (un+1−u0).

Then, if K < M or M1 < M, a simple inductive argument shows that for each n =

2,3, · · ·

tn < un, tn+1− tn < un+1−un and t? ≤ u? = lim
n→∞

un. (23.2.65)

Clearly {tn} converges under the (C ) conditions and conditions of Lemma 2.1. More-

over, as we already showed in Remark 23.2.3, the sufficient convergence criteria of

Theorem 23.2.6 can be weaker than those of Theorem 23.2.9. Similarly if L ≤M, {sn}
is a tighter sequence than {un}. In general, we shall test the convergence criteria and

use the tightest sequence to estimate the error bounds.
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(c) Clearly the conclusions of Theorem 23.2.9 hold if {sn}, (23.2.62) are replaced by

{r̃n}, (23.2.22), where {r̃n} is defined as {rn} with M0 replacing M1 in the definition

of β1 (only at the numerator) and the tilda letters replacing the non-tilda letters in

(23.2.22).

23.3. Numerical Examples

Now, we check numerically with two examples that the new semilocal convergence results

obtained in Theorems 23.2.6 and 23.2.9 improve the domain of starting points obtained by

the following classical result given in [20].

Theorem 23.3.1. Let X and Y be two Banach spaces and F : Ω ⊆ X → Y be a nonlinear

operator defined on a non-empty open convex domain Ω. Let x−1,x0 ∈ Ω and λ ∈ [0,1].
Suppose that there exists [u,v;F] ∈ L(X ,Y), for all u,v ∈ Ω (u 6= v), and the following four

conditions

· ‖x0 −x−1‖ = c 6= 0 with x−1,x0 ∈ Ω,

· Fixed λ ∈ [0,1], the operator B0 = [y0,x0;F ] is invertible and such that ‖B−1
0 ‖ ≤ β,

· ‖B−1
0 F(x0)‖ ≤ η,

· ‖[x,y;F]− [u,v;F]‖ ≤ Q(‖x−u‖+‖y−v‖);Q ≥ 0;x,y,u,v ∈ Ω;x 6= y;u 6= v,

are satisfied. If B(x0,ρ)⊆ Ω, where ρ =
1−a

1−2a
η,

a =
η

c+η
<

3−
√

5

2
and b =

Qβc2

c+η
<

a(1−a)2

1+λ(2a−1)
, (23.3.1)

then the secant-like methods defined by (23.1.2) converge to a solution x∗ of equation

F(x) = 0 with R-order of convergence at least 1+
√

5
2

. Moreover, xn,x∗ ∈ B(x0,ρ), the solu-

tion x∗ is unique in B(x0,τ)∩Ω, where τ = 1
Qβ −ρ− (1−λ)α.

23.3.1. Example 1

We illustrate the above-mentioned with an application, where a system of nonlinear equa-

tions is involved. We see that Theorem 23.3.1 cannot guarantee the semilocal convergence

of secant-like methods (23.1.2) , but Theorem 23.2.6 can do it.

It is well known that energy is dissipated in the action of any real dynamical system,

usually through some form of friction. However, in certain situations this dissipation is

so slow that it can be neglected over relatively short periods of time. In such cases we

assume the law of conservation of energy, namely, that the sum of the kinetic energy and

the potential energy is constant. A system of this kind is said to be conservative.

If ϕ and ψ are arbitrary functions with the property that ϕ(0) = 0 and ψ(0) = 0, the

general equation

µ
d2x(t)

dt2
+ψ

(
dx(t)

dt

)
+ϕ(x(t)) = 0, (23.3.2)
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can be interpreted as the equation of motion of a mass µ under the action of a restoring force

−ϕ(x) and a damping force −ψ(dx/dt). In general these forces are nonlinear, and equation

(23.3.2) can be regarded as the basic equation of nonlinear mechanics. In this chapter we

shall consider the special case of a nonlinear conservative system described by the equation

µ
d2x(t)

dt2
+ϕ(x(t)) = 0,

in which the damping force is zero and there is consequently no dissipation of energy.

Extensive discussions of (23.3.2), with applications to a variety of physical problems, can

be found in classical references [4] and [31].

Now, we consider the special case of a nonlinear conservative system described by the

equation

d2x(t)

dt2
+φ(x(t)) = 0 (23.3.3)

with the boundary conditions

x(0) = x(1) = 0. (23.3.4)

After that, we use a process of discretization to transform problem (23.3.3)–(23.3.4) into a

finite-dimensional problem and look for an approximated solution of it when a particular

function φ is considered. So, we transform problem (23.3.3)–(23.3.4) into a system of non-

linear equations by approximating the second derivative by a standard numerical formula.

Firstly, we introduce the points t j = jh, j = 0,1, . . .,m + 1, where h = 1
m+1 and m is

an appropriate integer. A scheme is then designed for the determination of numbers x j ,

it is hoped, approximate the values x(t j) of the true solution at the points t j. A standard

approximation for the second derivative at these points is

x′′j ≈
x j−1 −2x j +x j+1

h2
, j = 1,2, . . .,m.

A natural way to obtain such a scheme is to demand that the x j satisfy at each interior mesh

point t j the difference equation

x j−1 −2x j +x j+1 +h2φ(x j) = 0. (23.3.5)

Since x0 and xm+1 are determined by the boundary conditions, the unknowns are

x1,x2, . . . ,xm.

A further discussion is simplified by the use of matrix and vector notation. Introducing

the vectors

x =




x1

x2

...

xm




, vx =




φ(x1)

φ(x2)

...

φ(xm)




and the matrix

A =




−2 1 0 · · · 0

1 −2 1 · · · 0

0 1 −2 · · · 0
...

...
...

. . .
...

0 0 0 · · · −2




,
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the system of equations, arising from demanding that (23.3.5) holds for j = 1,2, . . .,m, can

be written compactly in the form

F(x)≡ Ax+h2vx = 0, (23.3.6)

where F is a function from R
m into R

m.

From now on, the focus of our attention is to solve a particular system of form (23.3.6).

We choose m = 8 and the infinity norm.

The steady temperature distribution is known in a homogeneous rod of length 1 in

which, as a consequence of a chemical reaction or some such heat-producing process, heat

is generated at a rate φ(x(t)) per unit time per unit length, φ(x(t)) being a given function of

the excess temperature x of the rod over the temperature of the surroundings. If the ends of

the rod, t = 0 and t = 1, are kept at given temperatures, we are to solve the boundary value

problem given by (23.3.3)–(23.3.4), measured along the axis of the rod. For an example we

choose an exponential law φ(x(t)) = exp(x(t)) for the heat generation.

Taking into account that the solution of (23.3.3)–(23.3.4) with φ(x(t)) = exp(x(t)) is of

the form

x(s) =

Z 1

0
G(s, t)exp(x(t))dt,

where G(s, t) is the Green function in [0,1]× [0,1], we can locate the solution x∗(s) in some

domain. So, we have

‖x∗(s)‖− 1

8
exp(‖x∗(s)‖)≤ 0,

so that ‖x∗(s)‖∈ [0,ρ1]∪ [ρ2,+∞], where ρ1 = 0.1444 and ρ2 = 3.2616 are the two positive

real roots of the scalar equation 8t −exp(t) = 0.

Observing the semilocal convergence results presented in this chapter, we can only

guarantee the semilocal convergence to a solution x∗(s) such that ‖x∗(s)‖ ∈ [0,ρ1]. For this,

we can consider the domain

Ω = {x(s) ∈C2[0,1] ; ‖x(s)‖< log(7/4), s ∈ [0,1]},

since ρ1 < log
(

7
4

)
< ρ2.

In view of what the domain Ω is for equation (23.3.3), we then consider (23.3.6) with

F : Ω̃ ⊂ R8 → R8 and

Ω̃ = {x ∈ R
8; ‖x‖< log(7/4)}.

According to the above-mentioned, vx = (exp(x1),exp(x2), . . . ,exp(x8))
t if φ(x(t)) =

exp(x(t)). Consequently, the first derivative of the function F defined in (23.3.6) is given

by

F ′(x) = A+h2diag(vx).

Moreover,

F ′(x)−F ′(y) = h2diag(z),

where y = (y1,y2, . . . ,y8)
t and z = (exp(x1)− exp(y1),exp(x2)− exp(y2), . . . ,exp(x8)−

exp(y8)). In addition,

‖F ′(x)−F ′(y)‖ ≤ h2 max
1≤i≤8

|exp(`i)| ‖x−y‖,
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where ` = (`1, `2, . . . , `8)
t ∈ Ω̃ and h = 1

9
, so that

‖F ′(x)−F ′(y)‖ ≤ 7

4
h2‖x−y‖. (23.3.7)

Considering (see [27])

[x,y;F] =

Z 1

0
F ′ (τx+(1−τ)y)dτ,

taking into account

Z 1

0
‖τ(x−u)+(1−τ)(y−v)‖dτ ≤ 1

2
(‖x−u‖+‖y−v‖) ,

and (23.3.7), we have

‖[x,y;F]− [u,v;F]‖ ≤
Z 1

0
‖F ′ (τx+(1−τ)y)−F ′ (τu+(1−τ)v)‖dτ

≤ 7

4
h2

Z 1

0
(τ‖x−u‖+(1−τ)‖y−v‖)dτ

=
7

8
h2 (‖x−u‖+‖y−v‖) .

From the last, we have L = 7
648

and M1 = 7
648

‖[F ′(x0)]
−1‖.

If we choose λ = 1
2

and the starting points x−1 = ( 1
10

, 1
10

, . . ., 1
10

)t and x0 = (0,0, . . .,0)t ,

we obtain c = 1
10 , β = 11.202658 . . . and η = 0.138304 . . ., so that (23.3.1) of Theo-

rem 23.3.1 is not satisfied, since

a =
η

c+η
= 0.580368 . . . >

3−
√

5

2
= 0.381966 . . .

Thus, according to Theorem 23.3.1, we cannot guarantee the convergence of secant-like

method (23.1.2) with λ = 1
2 for approximating a solution of (23.3.6) with φ(s) = exp(s).

However, we can do it by Theorem 23.2.6, since all the inequalities which appear in

(23.2.5) are satisfied:

0 < α0 = 0.023303 . . .≤ α = 0.577350 . . .≤ 1−2M1η = 0.966625 . . .,

where ‖[F ′(x0)]
−1‖ = 11.169433 . . ., M1 = 0.120657 . . . and

p(t) = (0.180986 . . .)t3 +(0.180986 . . .)t2− (0.060328 . . .)t− (0.060328 . . .).

Then, we can use secant-like method (23.1.2) with λ = 1
2 to approximate a solution of

(23.3.6) with φ(u) = exp(u), the approximation given by the vector x∗ = (x∗1,x∗2, . . . ,x
∗
8)

t

shown in Table 23.3.1 and reached after four iterations with a tolerance 10−16. In Ta-

ble 23.3.2 we show the errors ‖xn −x∗‖ using the stopping criterion ‖xn −xn−1‖ < 10−16.

Notice that the vector shown in Table 23.3.1 is a good approximation of the solution of

(23.3.6) with φ(u) = exp(u), since ‖F(x∗)‖ ≤ C×10−16. See the sequence {‖F(xn)‖} in

Table 23.3.2.
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Table 23.3.1. Approximation of the solution x∗ of (23.3.6) with φ(u) = exp(u)

n x∗i n x∗i n x∗i n x∗i
1 0.05481058 . . . 3 0.12475178 . . . 5 0.13893761 . . . 7 0.09657993 . . .
2 0.09657993 . . . 4 0.13893761 . . . 6 0.12475178 . . . 8 0.05481058 . . .

Table 23.3.2. Absolute errors obtained by secant-like method (23.1.2) with λ = 1
2

and

{‖F(xn)‖}

n ‖xn−x∗‖ ‖F(xn)‖
−1 1.3893 . . .×10−1 8.6355 . . .×10−2

0 4.5189 . . .×10−2 1.2345 . . .×10−2

1 1.43051 . . .×10−4 2.3416 . . .×10−5

2 1.14121 . . .×10−7 1.9681 . . .×10−8

3 4.30239 . . .×10−13 5.7941 . . .×10−14

23.3.2. Example 2

Consider the following nonlinear boundary value problem

{
u′′ = −u3 − 1

4
u2

u(0) = 0, u(1) = 1.

It is well known that this problem can be formulated as the integral equation

u(s) = s+
Z 1

0
Q (s, t) (u3(t)+

1

4
u2(t)) dt (23.3.8)

where, Q is the Green function:

Q (s, t) =

{
t (1− s), t ≤ s

s (1− t), s < t.

We observe that

max
0≤s≤1

Z 1

0
|Q (s, t)|dt =

1

8
.

Then problem (23.3.8) is in the form (23.1.1), where, F is defined as

[F(x)] (s) = x(s)− s−
Z 1

0
Q (s, t) (x3(t)+

1

4
x2(t)) dt.

The Fréchet derivative of the operator F is given by

[F ′(x)y] (s) = y(s)−3

Z 1

0
Q (s, t)x2(t)y(t)dt− 1

2

Z 1

0
Q (s, t)x(t)y(t)dt.
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Choosing x0(s) = s and R = 1 we have that ‖F(x0)‖ ≤
1+ 1

4

8
=

5

32
. Define the divided

difference defined by

[x,y;F] =

Z 1

0
F ′(τx+(1−τ)y)dτ.

Taking into account that

‖[x,y;F]− [v,y;F]‖ ≤
Z 1

0
‖F ′ (τx+(1−τ)y)−F ′ (τv+(1−τ)y)‖dτ

≤ 1

8

Z 1

0

(
3τ2‖x2 −v2‖+2τ(1−τ)‖y‖‖x−v‖+

τ

2
‖x−v‖

)
dτ

≤ 1

8

(
‖x2−v2‖+

(
‖y‖+

1

4

))
‖x−v‖

≤ 1

8

(
‖x+v‖+‖y‖+

1

4

)
‖x−v‖

≤ 25

32
‖x−v‖

Choosing x−1(s) =
9s

10
, we find that

‖1−A0‖ ≤
Z 1

0
‖F ′ (τx0 +(1−τ)x−1)‖dτ

≤ 1

8

Z 1

0

(
3

(
τ+(1−τ)

9

10

)2

+
1

2

(
τ+(1−τ)

9

10

))
dτ

≤ 0.409375 . . .

Using the Banach Lemma on invertible operators we obtain

‖A−1
0 ‖ ≤ 1.69312 . . .

and so

L ≥ 25

32
‖A−1

0 ‖= 1.32275 . . .

.

In an analogous way, choosing λ = 0.8 we obtain

M0 = 0.899471 . . .,

‖B−1
0 ‖ = 1.75262 . . .

and

η = 0.273847 . . ..

Notice that we can not guarantee the convergence of the secant method by Theorem 3.1

since the first condition of (3.1) is not satisfied:

a =
η

c+η
= 0.732511 . . . >

3−
√

5

2
= 0.381966 . . .
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On the other hand, observe that

M̃1 = 0.0988372 . . .,

K̃ = 1.45349 . . .,

α0 = 0.434072 . . .,

α = 0.907324 . . .

and

1−2M̃1η = 0.945868 . . ..

And condition (2.62) 0 < α0 ≤ α ≤ 1− 2M̃1η is satisfied and as a consequence we can

ensure the convergence of the secant method by Theorem 23.2.9.

Conclusion

We presented a new semilocal convergence analysis of the secant-like method for approx-

imating a locally unique solution of an equation in a Banach space. Using a combination

of Lipschitz and center-Lipschitz conditions, instead of only Lipschitz conditions invested

in [18], we provided a finer analysis with larger convergence domain and weaker sufficient

convergence conditions than in [15, 18, 19, 21, 26, 27]. Numerical examples validate our

theoretical results.
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